
Building Applications and Tools for OWL –
Experiences and Suggestions

Thorsten Liebig1, Marko Luther2, Olaf Noppens1, Massimo Paolucci2,
Matthias Wagner2, and Friedrich von Henke1

1 Dept. of Artificial Intelligence, University of Ulm, D-89069 Ulm, Germany
thorsten.liebig@uni-ulm.de, olaf.noppens@uni-ulm.de

friedrich.von-henke@uni-ulm.de
2 Future Networking Lab, DoCoMo Communications Laboratories Europe,

D-80687 Munich, Germany
<lastname>@docomolab-euro.com

Abstract. The success of the Semantic Web will largely depend on
whether W3C’s Web Ontology Language can reach broad acceptance and
a critical mass of industry-strength applications. We have been exploit-
ing the use of OWL with a particular focus on tool support for ontology
authoring and on providing access to the Semantic Web for mobile appli-
cations. In the latter case our vision is to overlay the Semantic Web on
ubiquitous computing environments making it possible to represent and
interlink content and services as well as users, devices, their capabilities
and the functionality they offer. In this paper we present our first expe-
riences and lessons learned from early work and try to give constructive
feedback for possible enhancements of OWL and its tools.

1 Introduction

OWL ontologies are arguably key building blocks of the future Semantic Web. In
fact, the success of the Semantic Web will largely depend on whether W3C’s Web
Ontology Language can reach broad acceptance and a critical mass of industry-
strength applications. In our research – with the vision of mobile and ubiquitous
access to the Semantic Web in mind – ontologies are also crucial in aspects
of mobile and pervasive computing. For the past few years, we have exploited
the usage of OWL within several practical projects that we briefly introduce in
the following. These projects are either concerned with fundamental support for
OWL-based development and/or with OWL-based services and applications in
the mobile computing arena.

After shortly presenting our projects in the following section, we discuss
fundamental language as well as technical aspects of the Web Ontology Language
from the perspective of developing OWL applications and tools. Within the
context of our projects we have identified limitations and problematic issues in
the language specification itself as well as in the tool support. As the usage of
ontologies is typically tightly coupled with reasoning systems, a particular focus
is put on DL-based reasoning support for OWL.



Context

Service

Representation

R
ea

so
ni

ng

OWL-SF

MobiOnt
MobiXpl

OntoTrack

McAnt

ContextWatcher

OWL

MobileOWLS

Knowledge Editors

DL-Reasoner

OWL-S

Fig. 1. Overview of Semantic Web project activities exploiting OWL.

2 Ongoing Projects

Figure 1 sketches the range of projects related to the Semantic Web that we
currently pursue in our laboratories (in white shading). It also positions these
activities w.r.t. established (pre-)standards and Semantic Web components (grey
shading). On a research map, our ongoing project activities can be aligned ac-
cording to their level of concern with OWL fundamentals in terms of represen-
tation capabilities and reasoning support.

While OntoTrack aims at tool support for OWL developers, the remaining
projects can be projected to an additional dimension representing activities that
target at semantic-based mobile applications in terms of support for context
representation and management, support for mobile services or both of these.

2.1 OWL-SF

Major challenges in designing ubiquitous context-aware systems include the dis-
tributed nature of context information and the heterogeneity of devices that pro-
vide services and deliver context. We have approached these challenges within
the project Owl-SF [1], a distributed semantic-based service framework. In the
Owl-SF prototype, OWL is used to capture high-level context elements in se-
mantically well founded ways. Devices, sensors and other environmental entities
are encapsulated and connected to the upper context ontology using OMG’s
Super Distributed Objects technology and communicate using the Representa-



tional State Transfer model. An early use case of Owl-SF studies enhanced
presence control to realize intelligent call forwarding [2].

2.2 ContextWatcher

Within the IST project MobiLife3 [3] we have implemented ContextWatcher,
an early prototype for semantic-based monitoring of mobile users. The project
aims at frameworks for context-aware services that support users in their daily
life. OWL upper context ontologies define the basic contextual categories and
the relations among them. Such high-level structuring of context information en-
ables its integration and consolidation on a semantic basis. Furthermore, the ax-
iomatic descriptions of context elements such as personal situations (i.e., Work-
ing, At home, etc.) can directly be used by logical inference engines to realize
reasoning about the user’s presence and virtual location [4].

2.3 McAnt

With our prototype McAnt we try to explore possibilities and core technolo-
gies towards leveraging the Semantic Web for desktop application enhancements
[5]. The idea is to deploy qualitative reasoning on the user’s personal desktop
environment to enable a more refined support for personal information organiza-
tion. As in our related activities, OWL and DL-based reasoning are explored as
enabling technologies for semantic enrichment. McAnt currently extends Ap-
ple’s desktop environment in terms of the Apple Address Book and the iCal
calendar tool. The project introduces a set of core ontologies that describe novel
OWL-based smart groups that build on Apple’s smart groups and folders.

2.4 OntoTrack

OntoTrack [6] is a novel graphical ontology editor and authoring tool. In
contrast to many other ontology authoring tools it combines an interactive graph-
based visualization with instant reasoning feedback about logical consequences
of ontology changes. The graphical representation provides a directly editable
subsumption graph. Moreover, each editing step is instantly synchronized with
a reasoner to provide feedback about logical consequences such as subsumption
relationships or unsatisfiablity of classes. This kind of direct feedback promise
to help the user identify non-intended modeling errors. Recently, we extended
OntoTrack with an on-demand textual explanation of subsumption.

2.5 MobiONT and MobiXPL

The discovery of adequate services will become a more and more demanding
problem especially for the mobile user who has to cope with changing context
3 MobiLife is an integrated project within the 6th Framework Program of the Euro-

pean Commission, Project-No. IST-2004-511607(IP)



and limitations of mobile terminals. We have implemented MobiOnt and Mo-
biXpl – a semantic matchmaker for service discovery and a personal mobile
client – to explore mobile user-centered services on the Semantic Web [7]. Our
vision is to take full advantage of future complex service offerings on limited
client devices and to handle the need for personalized service discovery in mobile
environments. Main contributions are in support for browsing service ontologies,
the cooperative discovery of services as well as an intuitive preference model that
can be easliy managed on restricted clients [8].

2.6 MobiOWLS

MobiOwlS is a new project in which we attempt to extend the OWL-S [9] upper
ontology for services to describe services for mobile and ubiquitous computing.
Our initial investigation concentrated on extending the OWL-S Profile to include
crucial quality-of-service information and contextual information that in our
experience is required to locate the best service that satisfies the needs of the
user. For example, we extended OWL-S with properties such as Media that
specifies the type of media, such as video vs text, that is used to deliver the
service, or the CostModel of the service, such as flat rate or a fee-per-use.

3 Experiences and Suggestions

3.1 Representation

References, Imports, and Ontology Headers. As a vocabulary extension
of RDF the Web Ontology Language inherits all of the reference and distribution
mechanisms of the lower language levels. For example, an OWL class (or prop-
erty) can be identified with help of an unambiguous URI given in the rdf:ID
tag. Furthermore, OWL allows for the distribution of a class (or property) across
multiple defining axioms within various RDF documents. It is even possible to
define a class bearing a virtual URI not related to any of the defining documents.
Syntactically this will raise a number of issues not only w.r.t. editing support
with help of authoring tools [6]. Because, when referring to this class from else-
where, its corresponding definition cannot be found at the URI implied by the
class ID.

Another problem is related to imports and ontology editing. Importing means
to include all statements of the imported ontology into the importing ontology.
Now, an ontology authoring tool has to distinguish between those statements of
the importing and those of the imported ontology during editing [10]. Imported
axioms should be visible because they are important for capturing the complete
set of definitions of the importing ontology. On the other hand, the imported
axioms do not belong to the ontology the user currently is editing. Very likely
the user is not interested to change imported ontologies by accident.

Furthermore, the notion of an ontology, by specifying an ontology header
with the owl:Ontology tag, is an additional structuring element within OWL.



Such an ontology header is optional or may even appear more than once in a
document. As a result, the relationship between class and property axioms and
an ontology is unclear. To make things even more confusing, an ontology header
is the only way to import other documents or to encode versioning information
for ontologies.

In addition, the vision of the Semantic Web heavily builds on sharing and
re-using ontologies. However, neither importing nor referencing are appropriate
mechanisms for this task. Importing requires to include all ontologies (within
the transitive closure of the import relationship) into reasoning. In contrast, ref-
erencing entities of other ontologies is just a syntactical mechanism without con-
sidering any semantics. To overcome these fundamental problems, OWL needs a
clearer semantical foundation, and practical mechanisms for handling imports,
ontologies and cross ontology references in first place. The recently proposed
E-connection mechanisms [11] seem to be a good starting point for supporting
the sharing and re-usage of ontologies.

The Sublanguages of OWL. OWL comes with three increasingly expressive
sublanguages in order to meet different user requirements and developer efforts.
OWL Lite – the least expressive language – is aiming to provide a useful sub-
set of language features that are easy to present to naive users and relatively
straightforward for tool implementers to support [12]. However, the syntactical
limitations come with relatively little loss in expressive power. With the help of
syntactical tricks all of OWL DL, the sub-language next-higher in expressiveness,
can be captured in OWL Lite with the exception of those descriptions containing
either individuals or cardinalities greater than 1 [13]. In fact, OWL Lite is a very
expressive language, whose set of syntactical language constructs has been more
or less randomly restricted. As a result, when using the whole expressiveness
of OWL Lite the resulting ontology is much harder to grasp as a semantically
equivalent OWL DL representation. The most expressive sub-language, OWL
Full, combines OWL DL with all of RDF(S). As a result of non-standard and
second order features of RDF(S) (reification, no division between individuals and
classes, etc.) OWL Full is not decidable which restricts its practical use. Fur-
thermore, OWL Full bears conceptual problems like the possibility to redefine
language constructs of OWL itself.

In conclusion, OWL virtually consists of only one language, OWL DL, since
Lite is nearly as complex as DL and Full is not attractive for semantical and
computational reasons. We suggest to restrict OWL Lite in a way that we believe
was originally intended by the language designers. In particular, we propose to
forbid general concept inclusions (GCIs) as well as multiple definitions for one
class identifier, as we have done in the context of our ontology authoring tool
OntoTrack [6]. Very likely those constructs will rarely occur in real world OWL
Lite ontologies. Instead, users will presumably use OWL DL when disjunction or
negation are needed for a certain application domain. In addition, we believe it
would make sense to have a set of more finely graded sublanguages ranging from
AL or ALC up to OWL DL, including at least two intermediate sublanguages.



First, this probably would make it easier for novice users to adopt OWL. Second,
the less expressive languages would benefit from a broader variety of reasoning
technology (e. g. from the Datalog/DB community). Third, this would allow us
to add non-standard language extensions (see below) to OWL, which typically
require to be combined with less expressive languages.

Language Extensions. OWL is a declarative language tailored to represent
conceptual knowledge. Many applications, however, require the modeling of ac-
tions, states, uncertainty, or an explicit notion of time. Besides the ongoing
efforts for an Semantic Web Rules Language (SWRL) we strongly suggest the
development of other extensions. For example, recent extensions of Description
Logics with fuzzy modifiers [14,15] should be taken into consideration for further
investigations. Other DL extensions concerning action formalisms [16] and time
[17] are also candidates for optional OWL add-ons. Beyond that, OWL lacks an
official query language which is needed in order to have a common platform for
applications and reasoning systems.

Representing Services. Our experience with MobiOWLS highlighted two
problems related to representing and reasoning with service descriptions. The
first problem is that it is very difficult to restrict the ontology within the bound-
aries of OWL DL. For example, it is very difficult to describe a service that works
only in some contexts such as office buildings. The problem of such a description
is that it is within OWL Full, because the instance of a service refers to the
class of all office buildings. To work around this problem we adopted the same
solution adopted by OWL-S, which is to refer to URIs of the OWL classes and
instances that we want to use. As a consequence our ontology is still within the
boundaries of OWL-DL, at the expense of essentially giving up OWL reasoning
on our service descriptions. The second problem is that there is no representa-
tion, and reasoning, for quantities and comparing quantities. For example, it is
impossible to define a broadband terminal as a terminal with bandwidth greater
than 1Mbps or any other quantity. In general, the lack of representation and
reasoning about quantities hampers the representations of important quality
of service features of services, greatly reducing the usefulness of OWL for the
representation of services.

3.2 Reasoning

Incremental Reasoning and Retraction. Our experience in developing on-
tologies shows us that instant reasoning feedback is a key functionality for on-
tology authoring tools. Therefore, we developed OntoTrack to effectively sup-
port the user in creating and maintaining ontologies [6]. It should not rely on
the user’s discipline to (re-)classify the ontology after some editing steps. More-
over, understanding all classification consequences (such as taxonomy changes
and inconsistency) even after a few editing steps becomes a difficult task.



Unfortunately, current OWL reasoners typically only provide some kind of
batch-oriented reasoning procedure. After loading an ontology and classification
one can pose TBox as well as ABox queries. But there is no possibility to re-
tract or change statements without reloading the updated ontology. A notable
exception here is RACER [18] which offers low-level retraction support for most
of its statements. However, because of the lack of algorithms for appropriatly
handling incremental additions as well as retractions [19], complete reclassifi-
cation is necessary after each change in the ontology. In addition, when using
an optimized tableaux-based reasoner for a language as expressive as OWL,
retracting and changing definitions may be of high complexity because of op-
timization techniques such as absorption. However, incremental reasoning and
retraction is an important premise for almost all interactive OWL-based tools
or applications. An ad-hoc solution could consist of a heuristic that analyzes the
retraction statement and decides about local deletion of statements or complete
reclassification.

Furthermore, technical aspects concerning standard interfaces and communi-
cation are also an important issue for building interoperable applications. State-
of-the-art reasoners should be network-aware, able to manage multiple clients,
and support standard interfaces such as DIG [20]. We suggest to extend the
DIG interface for incremental reasoning and retraction. Even if reasoners do not
distinguish between some kind of on-the-fly retractions and reclassification, pro-
viding such functionality in DIG will not only reduce the application’s burden
in an interactive environment such as ontology authoring, but also minimize
the amount of unnecessary data transfer. For instance, interactive applications
(resp. reasoner) which would like to perform retractions via a retraction-unaware
interface would have to re-submit the whole ontology after each retraction step
althought most of the explicit statements are unmodified and therefore typically
already available in the reasoner system as explicitly added statements.

Non-standard Inference Services. OWL is expected and explicitly intended
to be used by users without much formal background. Therefore, the ability to
support users to understand and debug ontologies is crucial for the Semantic
Web in general and identified as a major research challenge [21]. Non-standard
reasoning services are of cource not directly related to the OWL specification.
However, they are important for users in order to design and maintain sound
and well-balanced ontologies. Therefore, we suggest to add some of them as an
optional extension to standard interfaces commonly used within OWL reasoning.

Potential helpful non-standard services mainly cover explaining the reason-
ing about and debugging of ontologies on both the conceptual (TBox) and the
instance (ABox) side. Explaining TBox queries like subsumption, unsatisfiabil-
ity, and equivalence for nearly all of OWL Lite can be found in [22]. There is also
work on explaining ABox query answers [23] as well as why such a query failed
[24]. Debugging of ontologies by identifying the core of incoherence also produced
some prototypical services [25], [26]. There are additional non-standard reasoning
services suitable to support ontology authoring like matching of class patterns,



rewriting or approximation [27] as well as the least common subsumer (TBox)
or the most specific concept (ABox) [28]. Work on explaining non-subsumption
(why a subsumption does not hold) is still missing.

3.3 Infrastructure

Publish-Subscribe Standard Protocol. It is not only applications like On-
toTrack which are sensitive to incremental logical consequences. Almost all
reasoning intensive applications require an API offering a high-level publish-
subscribe mechanism. Otherwise such an application would be responsible for
querying the reasoner for all consequences it is interested in – or even worse the
application needs to compute or filter the desired consequences out of low-level
reasoner queries. For instance, to become aware of changes in the ontology’s hi-
erarchy an application has to check for direct superclasses for almost all classes
in the worst case. Then it has to compute the differences with respect to the pre-
vious state. Using an external reasoner via a standard interface such as DIG [20]
will cause additional communication overhead, especially if the ratio between
ontology entities (or axioms) involved in the change(s) and queries needed to
perform is low. However, information about logical consequences are typically
already available on reasoner side after reclassification.

We therefore propose a TBox publish-subscribe mechanism on the reasoner
side which roughly corresponds to a similar technique of RACER’s ABox publish-
subscribe mechanism. As not all applications will be interested in all ontology
changes (or even in none of them) and in order to minimize a possible notification
overhead, such a publish-subscribe is to be characterized as follows: (i) it should
be optional, (ii) specific w.r.t. the kind of ontology query, (iii) selective to the
set of ontology entities (subset or all), and (iv) granular on the interval it will
give its notification feedback. Adjusting the granularity may allow for defining
notification “points” in an incremental environment. For instance, an application
may only want to be informed about the consequences of a whole set of changes
– not about the consequences of each of the changes separately.

In order to standardize such a publish-subscribe mechanism we suggest to
extend the specification of the common DIG interface in the following way. We
propose to divide the DIG interface into two parts: the core DIG and optional
extensions. It is desirable that the core will be extended to support an interface
for incremental reasoning and retraction of statements. The extensions should
cover a publish-subscribe mechanism as well as non-standard inference service
(see the previous subsection). The main idea behind a modularized DIG interface
is that all DIG-compliant reasoners support the core interface, but it depends
on the functionality of the reasoner which extension it will support – the more
the better.

4 Conclusion and Suggestions

The wide adoption and success of Semantic Web applications strongly depends
on a description language reflecting the character of distributed resources on



the Semantic Web, as well as on inference services and appropriate interfaces
to access them. Due to our experience in a broad spectrum of Semantic Web
applications ranging from an ontology tool to applications in mobile and service-
related environments, we have identified general problematic issues.

We argue that for sharing and reusing ontologies the currently provided ontol-
ogy import, which brings all triples into the imported ontologies, is not sufficient.
Therefore, an appropriate mechanism on the syntactical as well as the semantic
level is necessary for importing ontologies and referencing entities in other on-
tologies. Another important issue is the sublanguage ranking of OWL. We have
shown that OWL basically consists only of one language and therefore propose
a more finely graded sublanguage ranking. From a less expressive sublanguage
than OWL DL non-standard language extensions can also benefit which may be
otherwise un-decidable.

In addition, in a number of applications we have encountered the limitations
of purely conceptual knowledge. We therefore suggest to also take into consid-
eration extensions such as action formalisms, time, and uncertainty. Technical
issues such as non-standard inference services and incremental reasoning are
also important, especially for interactive environments. We propose a modular-
ized extension to the common DIG interface not only to support incremental
reasoning and retraction of statements but also to plug-in additional extensions
for non-standard inference services as well as a publish-subscribe protocol for
the notification of logical changes within an ontology.

References

1. Mrohs, B., Luther, M., Vaidya, R., Wagner, M., Steglich, S., Kellerer, W., Ar-
banowski, S.: OWL-SF – a distributed semantic service framework. In: Proc. of
the Workshop on Context Awareness for Proactive Systems (CAPS’05), Helsinki
(2005) 67–77

2. Luther, M., Mrohs, B., Vaidya, R., Wagner, M.: OWL-SF – distributed owl-based
reasoning on objects in the real world. In: Proc. of ISWC’05 Demo Track, Galway
(2005)

3. MobiLife: Project homepage. http://www.ist-mobilife.org (2005)
4. Luther, M., Böhm, S., Wagner, M., Koolwaaij, J.: Enhanced presence tracking for

mobile applications. In: Proc. of ISWC’05 Demo Track, Galway (2005)
5. Böhm, S., Luther, M., Wagner, M.: Smarter groups – reasoning on qualitative

information from your desktop. In: Proc. of the 1st Workshop on The Semantic
Desktop at ISWC’05, Galway (2005)

6. Liebig, T., Noppens, O.: OntoTrack: A semantic approach for ontology author-
ing. Journal of Web Semantics 3 (2005) in press.

7. Wagner, M., Liebig, T., Noppens, O., Balzer, S., Kellerer, W.: Towards Semantic-
based Service Discovery on Tiny Mobile Devices. In: Proc. of the Workshop on
Semantic Web Technology for Mobile and Ubiquitous Applications at ISWC’04,
Hiroshima (2004) 90–101

8. Wagner, M., Noppens, O., Liebig, T., Luther, M., Paolucci, M.: Semantic-based
Service Discovery on mobile Devices. In: Proc. of ISWC’05 Demo Track, Galway
(2005)



9. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara,
K.: OWL-S: Semantic Markup for Web Services. Member Submission, W3C (2004)

10. Kalyanpur, A., Parsia, B., Hendler, J.: A Tool for Working with Web Ontologies.
Journal of Semantic Web and Information Systems 1 (2005) 36–49

11. Grau, B.C., Parsia, B., Sirin, E.: Working with Multiple Ontologies on the Semantic
Web. In: Proc. of the 3rd Int. Semantic Web Conference (ISWC’04), Hiroshima,
Springer (2004) 620–634

12. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P., Stein, L.A.: OWL Web Ontology Language Reference. W3C Rec-
ommendation (2004)

13. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics 1 (2003)

14. Straccia, U.: Fuzzy ALC with Fuzzy Concrete Domains. In: Proc. of the Int.
Workshop on Description Logics (DL’05), Edinburgh (2005) 96–103

15. Hölldobler, S., Nga, N.H., Khang, T.D.: The Fuzzy Description Logic ALCFLH .
In: Proc. of the Int. Workshop on Description Logics (DL 2005), Edinburgh (2005)

16. Baader, F., Lutz, C., Miličić, M., Sattler, U., Wolter, F.: Integrating Description
Logics and Action Formalisms: First Results. In: Proc. of the Int. Workshop on
Description Logics (DL’05), Edinburgh (2005) 192–199

17. Artale, A., Franconi, E.: A Survey of Temporal Extensions of Description Logics.
Annals of Mathematics and Artificial Intelligence (AMAI) 30 (2001) 171–210

18. Haarslev, V., Möller, R.: RACER System Description. In: Proc. of the Int. Joint
Conference on Automated Reasoning (IJCAR’2001), Siena, Springer (2001) 701–
705

19. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.:
Description Logics Systems. In: The Description Logic Handbook. Cambridge
University Press (2003)

20. Bechhofer, S.: The DIG Description Logics Interface: DIG/1.1. Technical report,
University of Manchester (2003)

21. Horrocks, I.: Applications of Description Logics: State of the Art and Research
Challenges. In: Proc. of the 13th Int. Conf. on Conceptual Structures (ICCS’05).
(2005) to appear.

22. Liebig, T., Halfmann, M.: Explaining Subsumtion in ALEHFR+ TBoxes. In: Proc.
of the Int. Workshop on Description Logics (DL’05), Edinburgh (2005) 144–151

23. McGuinness, D., da Silva, P.: Explaining Answers from the Semantic Web: The
Inference Web Approach. Journal of Web Semantics 1 (2004) 397–413

24. Chalupsky, H., Russ, T.: WhyNot: Debugging Failed Queries in Large Knowledge
Bases. In: Proc. of the Innovative Applications of Artificial Intelligence Conf.
(IAAI-02), Edmonton, AL, Canada (2002) 870–877

25. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging owl ontologies. In: The 14th
International World Wide Web Conference (WWW2005), Chiba, Japan (2005)

26. Wang, H., Horridge, M., Rector, A., Drummond, N., Seidenberg, J.: A Heuristic
Approach to Explain the Inconsistency in OWL Ontologies. In: Proc. of the Int.
Protégé Conference, Madrid, Spain (2005)

27. Brandt, S., Turhan, A.Y.: An Approach for Optimized Approximation. In: Proc.
of the Workshop on Applications of Description Logics (ADL’02). (2002)

28. Baader, F., Sertkaya, B., Turhan, A.Y.: Computing the Least Common Subsumer
w.r.t. a Background Terminology. In: Proc. of the 2004 Int. Workshop on Descrip-
tion Logics (DL 2004), Whistler (2004) 11–20


