
Open vs Closed world, Rules vs Queries:

Use cases from Industry

Gary Ng

Cerebra Inc., Carlsbad, California, USA

gary@cerebra.com

Abstract. This paper is a discussion of the application of OWL driven by

commercial use cases. These use cases support the integration of OWL with

rule-like extensions, taking advantage of open-world semantics, but with de-

faults and negation as failure. This paper reports on our analysis of these use

cases, current solutions using queries, and outlines the role OWL plays in a se-

mantically driven enterprise architecture.

1 Introduction

The realization of a new ontological web with interoperable services begins from be-

hind enterprises’ firewalls. Taking aim at corporate data, the value of semantics is to

provide adaptive and agile data management capabilities that will stand up to complex

demands. In parallel, enterprise architecture is also moving towards semantically

driven services that are discoverable by machines automatically. The goal is to place

the control and the agility of business processes directly under the hands of business

users, offering appropriate level of information to the right hands at the right time for

decision making.

A few of the issues reported in the recent Rules Workshop [3] were related to the

differences between declarative knowledge and a programming language. While in-

teroperability of rules across diverse systems is an important issue for the semantic

web, maintainability of the rules with precise semantics is more important within a

cooperate environment. As such the reliance on rule ordering and conflict resolution

should be avoided.

We report on two commercial use cases where rules and OWL-DL complement

each other, favoring the “layered” architecture over the “two towers” approach [5].

For each use case we explain why the enterprise is looking into using semantic tech-

nologies, and how their use cases are described using OWL-DL. We also propose

how OWL, rules with negation as failure (NAF) and other kinds of rule can fulfill the

use cases in a single coherent manner.

2 Background

Two use cases are described. The first is on the use of OWL in adaptive enterprise

networks, the second is on product classification for market report generation. For

each, we describe the purposes and aims, how it is currently solved, and the motiva-

tion for using OWL.

2.1 Adaptive Enterprise Network

The day to day operation of an enterprise relies on many individual computers, serv-

ers, and IT systems working in concert. Each system must be functional and meet the

demands of business processes. Consider a manufacturer with systems dedicated for

purchasing and orders, accounting and finance, pricing and discounts, production as-

sembly, packaging and shipping. Each system in turn is made up of different sub-

systems. For example, a fleet of computers to calculate trading gains and loss every

day within accounting; Business to business messaging middleware to contact suppli-

ers’ web-services to purchase parts; Business process engines governing the proce-

dural flow of individual operations for ordering and shipping. Some systems are

physical hardware entities, some are software and some systems are only conceptual

entities. Let’s refer to these systems as “nodes” in a network of systems. Each node

offers some service and may rely on other nodes. Many may rely on email servers to

communicate and report problems back to the employees within the organization.

Failure or a poor quality of service in any one node may affect the overall operation

of the organization and responsiveness to potentially damaging events.

A business process management tool monitors the performance and health status of

all automatic processes within an organization. Human operators are alerted of any

failing nodes, which must be investigated and rectified. A self-healing enterprise net-

work is one where the human involvement is minimized, in which backup systems

and equivalent services meeting the same demands are brought into service dynami-

cally, replacing those that are failing.

The problem here is more complex than simply providing secondary backup on

every system. A failure of a service is not simply a matter of not working, which can

be rectified by a secondary backup. There are many conceptual levels of failure, such

as failing to meet response time or bandwidth, and each service/system may have ad-

ditional metrics to define the quality of service. The solution to each kinds of failure

is also different. Some solutions involve borrowing additional resources to share the

load. Each new resource must also be configured with the right software. Similarly,

the definition of “equivalent” services is a conceptual issue in itself, where not just the

same functionality has to be met, but it is also a function of response time, bandwidth

and reliability.

Vendors offering solutions in this area have begun to look at formal semantics as

an alternative to probabilistic methods. These companies see the OWL recommenda-

tion as a means to allow more precise definitions of failures for better provenances.

The use of formal knowledge representation can potentially lead to a cleaner para-

digm to describe, maintain and control the detection and diagnostic processes.

Clearly this problem is large and is not just an issue of conceptual modeling. How-

ever, we shall ignore much of the technical details of how such self-healing network

is realized. In this paper we focus on the conceptual modeling issue surrounding the

detection of root causes of a failing, or sub-optimal network. Having root causes iden-

tified could help both the human operator and any automatic processes in rectifying

the problem.

In the discussion that follows, the metadata of each network node and their status is

captured. Within a business process manager, an ontology with complex axioms is

used to determine the “Goodness” of a node. In this use case the ontology with its in-

stance data represents a “snapshot” of the network status. This use case is highly

event driven, and inferencing service is used to detect problems by classifying node

status. The discussion here focuses on defining the notion of nodes that are root

causes of a failure. It is defined as something that is itself failed, but none of the ser-

vices it relies on has failed. It is here that the element of negation of failure is rele-

vant.

2.2 Product Classification for Market Reporting

A timely financial report meeting internal demands as well as government regulations

is an increasingly important issue. Such financial report contains product revenue data

organized into a variety of technology market segments. Each segment represents a

market and the company’s share in that market is judged based on the report. Misre-

porting has significant consequences, from affecting the company’s market share, to

attracting legal allegations.

In one example, there are 50,000 products stored in a database; each product can be

classified into multiple market segments depending on the technologies the product is

built on. For example, network routers are also switches and a router often contains a

firewall in the firmware. Depending on the product line and the embedded technol-

ogy, products such as routers can be classified as either high-end, low-end, or mid-

range; in addition to being a firewall and switches with similar sub-categorization.

Overall there are over 500 market segments into which products are classified.

These market segments form a hierarchy. For market analysts, such report also in-

cludes data on units sold in each segments.

In the use case being studied, classification rules specified against products were

implemented using spreadsheets and PLSQL. Each rule body contains a variety of cri-

teria, from product features, technologies it contains, to criteria based on corporate

categories such as product families and the respective business units. There were ap-

proximately 200 rules for product classification, and another 200 rules for distributing

units sold among market segments when a single product falls into multiple catego-

ries. Its translation into OWL features axioms specifying class memberships of indi-

viduals, base on the properties of the individuals.

The requirement here is to automatically classify all products correctly into market

segments, according to a set of business defined classification rules. These rules may

change over time, as segment definitions changed, new products may be introduced

and old products made obsolete. The existing implementation of rules based on

spreadsheet and PLSQL is complex. The rule set is order dependent, and their specifi-

cation requires technical expertise, akin to application programming. In this use case,

much of the complexity in writing and maintaining the rule set comes from the order

dependent nature: If a product is not positively identified and dealt with by any previ-

ous rules, then it should classified as X. The maintenance and extension of a rule of-

ten involve looking at all preceding rules. One must be certain whether or not a par-

ticular change will result in (un)desirable classification. Such concern lengthens the

time to integrate, test and put changes into production.

The motivation to move away from rule programming towards a declarative se-

mantics such as that offered by OWL holds the potential for a simpler rule language.

One that is usable directly by business users and financial analysts, and changes can

be made quickly. These users are the domain experts on how these products should be

classified and transaction data be reported. Declarative semantics offers precise and

easily reconfigurable classification of products into market segments that can ulti-

mately shorten the time to produce such reports.

The example in focus here is on the classification of network routers. The issue

here is the use of defaults in classification to deal with incomplete data, or to put

things into a broad market category.

3 Analysis

3.1 Adaptive Enterprise Network

The ontology we have constructed contains a class “Node”, which can represent a

server or a software system. Different kinds of nodes are modeled as sub-classes of

“Node”. Individual nodes are modeled as instances. Each node may have zero, one, or

more "reliesOn" relationships to other nodes. For example, a “Bugzilla” node might

rely on an “EmailRelay”; an "EmailRelay" node in turn might rely on a "DNSServer"

node.

All nodes must fall into two kinds: "GoodNode" and "BadNode". Further, we as-

sert that any node with a "reliesOn" relationship to a "BadNode" means itself is a

"BadNode". All these are both intuitive and well within the expressiveness of OWL-

DL. In practice, the "reliesOn" relationship can also be asserted as transitive: if A reli-

esOn B and B reliesOn C, then A reliesOn C, but that property isn't necessary for the

discussion here.

The ontology thus contains a graph of instances representing the inter-dependency

of nodes in the enterprise network. Each node has its own class of node type. Each

type of node has a set of sufficient and necessary conditions under which it becomes a

“BadNode”. Some definitions may involve other successor nodes. For this OWL-DL

seems perfectly suited, offering formal and complex classification of network nodes.

At runtime, the ontology is updated with status reports from each node. Each time

a status change the whole network is reclassified and problems identified. The prob-

lem is in the form of the question we wish to ask: "Given that we know there's a prob-

lem, what are the possible root causes of that problem?”.

We translated this notion of a "RootCause" to the OWL-DL concept:

RootCause ≡ BadNode ⊓ ∀reliesOn GoodNode

We are looking for nodes which are “BadNodes”, but not because of another “Bad-

Node” upon which they depend (that “BadNode” dependency would have to be fixed

first). In other words, a “BadNode” is one that only depends on “GoodNodes”.

So we're looking for nodes which fit this "RootCause" concept. The trouble comes

with what we mean by "fit". Hoping that simply retrieving the members of “Root-

Cause” is the answer is naive. Here we have an open-world view of the world. An

OWL-DL engine cannot prove memberships to “RootCause” unless it is known that

some nodes definitely do not rely on any “BadNodes”, or only rely on “GoodNodes”.

For example, we've asserted that the “Bugzilla” node “reliesOn” "EmailRelay" and

"EmailRelay" “reliesOn” a "DNSServer". From a closed world view, a malfunction-

ing “Bugzilla” and a malfunctioning “EmailRelay” with a functional “DNSServer”

would suggest “EmailRelay” is a root cause in this simple network.

In an open world however, it is assumed that something is possible unless explic-

itly stated otherwise. We have no definitive assertions on whether “EmailRelay” rely

on only good nodes, or only bad nodes. Thus it is entirely correct for an OWL-DL en-

gine to conclude that a malfunctioning “EmailRelay” with a functional “DNSServer”

does not necessarily mean that the “EmailRelay” itself is the root cause.

With an open world system, what we're really looking for are nodes that might be

the root cause. The “EmailServer” might be the cause of the whole problem in this

case. To explain the notion of “might be”, consider the following. For all “Nodes” and

a sub-class C, we can partition all nodes into three distinct sets:

1) Those that are known to lie within C, said to be a member of C.

2) Those that are known to lie outside of C, said to be a member of ¬C.

3) Those that might lie inside or outside C, isn't a member of either C or ¬C.

In this case, let C be “RootCause”, we're looking for everything except group 2:

those things that are definitely root causes and things that may or may not be root

causes. Since everything must fall into one of these three groups, all we have to do is

subtract everything from group 2 from the set of nodes: subtract all members of

"¬RootCause" from the set of nodes. In our example, "Bugzilla" and "DNSServer"

would be returned as the subs of "¬RootCause", and we would return only "Email-

Server" to the user.

This satisfies the use case by delivering the expected results. However, the way the

question is asked and the result is derived is not as straight forward as the retrieval of

other classes.

It should be pointed out that the hierarchy of bad nodes in terms of their “reliesOn”

relationship could be traversed to work out the root cause, which is a much simpler

method than classification. The suggested solution here represents what one can do if

it has been mandated to use an OWL reasoning engine. It was a worthy exercise to

explore the boundary of an OWL reasoning system as a black box, uncovering “how

much inferencing it can or cannot do” for a given problem. To a lot of commercial

customers this is a mystery. It is clear here that some custom code has to be written on

top in order to solve the problem completely: either to perform graph traversals, or to

perform additional satisfiability tests.

3.2 Product Classification for Market Reporting

The promise of complex classification by formal definitions has attracted this use case

to OWL. Formal semantics hold the key to complex product typing involving product

features, a hierarchy of product families as well as a hierarchy of business units. Once

the formal definitions of the core operational data is devised, other aspects such as se-

cure data access and separation of duties (such as financial analysts, corporate users)

can be defined on top; forming an information infrastructure based on semantics.

An abstraction of the issue can be described as follows. Let {X1, X2…, Y1, Y2…, Z1,

Z2…} be the set of technology features in the domain, each are represented as con-

cepts, and p1, p2, … be the individual products in the domain. Each product pi may be a

member of one or more of these features. Router, HighEnd, LowEnd, and MidRange

are concepts representing technology market segments in the domain:

1) Router = { pi | pi ∈ Z1, pi ∈ Z2… pi ∈ Zn }. Products fall within certain criteria

are routers.

2) Routers are disjoint covered by HighEnd, LowEnd and MidRange

3) HighEnd = { pi | pi ∈ X1, pi ∈ X2… pi ∈ Xn }. Those contain certain technology

features are high end routers.

4) LowEnd = { pi | pi ∈ Y1, pi ∈ Y2… pi ∈ Yn }. Those contain certain technology

features are low end routers.

5) The remaining Routers are considered MidRange.

The last rule is a default classification. The class of “MidRange” routers represents

those that are identifiable neither as HighEnd nor LowEnd. Representing this requires

negation-as-failure. This group of Routers cannot be provably identified as “Mid-

Range” within an open world assumption with respect to the set of axioms above.

With the disjoint covered axioms (2), a product that does not fit the sufficient con-

dition of a “HighEnd” router is automatically in the complement set of “HighEnd”,

and likewise for “LowEnd”. However, it does not follow that any routers which might

conceptually be “MidRange” are necessarily always identifiable as either

“¬HighEnd” or “¬LowEnd”. In some cases where the criterion is in the concrete do-

main this is trivially satisfied. However, not all criteria are in the concrete domain and

incomplete information is often expected. A solution is to explicitly assert that such

an instance does not satisfy at least one criterion within the set of X or Y. However,

such amount of explicitness is hard to maintain and defeats the point of using an

open-world system that is capable of handling incomplete information.

It can be shown that this is in fact similar to the previous example. Here we are

looking for members of Routers which might be “¬HighEnd” or “¬LowEnd”. Thus

this can also be retrieved through result set manipulation.

5 Experience and Discussion

5.1 Negation as failure (NAF)

Both examples exhibit some form of closed-world assumption. In the root cause

analysis example, in order to identify something as a root cause of a problem over a

chain of faulty "nodes", one needs to explicitly assert that something is in fact at the

end of the faulty dependency chain. This essentially closes the world for that node,

i.e. we have complete information on that node with respect to its dependencies. In

the product classification, where the conjunction of a set of criteria is involved, it is

not necessary to have complete information on a product for it to be classified as ex-

pected, but it must have sufficiently complete information (failing at least one of the

criteria) for the inference to occur. This makes it very difficult to determine just how

much information is required in each individual case.

It would be convenient for modelers in these cases to use a concept constructor ¬

naf., with which the concept “RootCause” node can be defined as:

BadNode ⊓ ¬ naf (∃ reliesOn BadNode) (1)

In other words, a “RootCause” node is a “BadNode” that has zero “reliesOn” rela-

tionship to a “BadNode”, with respect to the current known state of the universe.

Simply put, it is a bad node that is not known to rely on any bad node.

Similarly, the definition of “MidRange” could be reformulated as:

Router ⊓ ¬ naf HighEnd ⊓ ¬ naf LowEnd (2)

In other words, a “MidRange” router is a router that is neither proven to be

“HighEnd” nor “LowEnd”, but does not necessarily possess any information in the

current known state of the universe that it is within their complement set either. Sim-

ply put, it is a router that is not known to be high end, and is not known to be low end.

 Such operator can be supported by a powerful query language. Query languages

already have a closed world flavor, as distinguished variables can only bind to named

individuals. As already discussed in the previous section, it is natural to implement

this by way of query subtraction.

This operator is in fact the epistemic operator K as described by Donini et al [1].

The K-operator is a formalization of negation as failure, closed-world queries, and

other popular features of non-monotonic systems. It has been shown that it can be

added onto open-world concept languages while preserving the open-world semantics

of ordinary (non-K) queries. Their work gives a clear formal semantics and the com-

putational properties of its algorithms for query answering are known. However, to

date we are not aware of K-operator support in any implemented systems, it is not in

the specification of OWL, and that it isn't clear there exists an efficient procedure for

its implementation.

Another approach which can positively identify the desired set of instances without

formal support for the K-operator is to exploit the satisfiability of these instances with

the complement of certain classes. For example, consider those instances inferred to

be members of the expression (∃ reliesOn BadNode), let’s call this expression rBN. It

is known that rBN(x) is satisfiable and that ¬rBN(x) is not satisfiable. We say it is

provable that rBN(x) is true, i.e. rBN(x) is true in all models of the KB. For the re-

mainder of the instances that offer no evidence it is relying on any BadNode, both

rBN(x) and ¬rBN(x) are satisfiable, i.e. either rBN(x) and ¬rBN(x) is true in any

models of the KB. Thus our desired set of instances which are potentially root causes

are exactly those where ¬rBN(x) is satisfiable, i.e. (∀ reliesOn GoodNode) is satisfi-

able. We introduce two query predicates: Provably and Satisfiably in the remainder of

this discussion to capture the above notions.

Thus the set of “RootCause” nodes {x} is:

Provably(BadNodes(x)) ∩ Satisfiably(∀ reliesOn GoodNode(x)) (3)

Similarly in the product example, for those instances inferred to be a members of

either “HighEnd” or “LowEnd”, lets call them HE(x) and LE(x) respectively. It is

known that A(x) is satisfiable and that ¬A(x) is not satisfiable, where A can be HE or

LE. For the remainder of the instances that are intended to be “MidRange”, both A(x)

and ¬A(x) are satisfiable.

Thus the set of “MidRange” routers {y} is:

Provably(Router(y)) ∩ Satisfiably(¬HighEnd (y)) ∩ Satisfiably(¬LowEnd (y)) (4)

Note the symmetry of (1) and (3), as well as (2) and (4). Also note that in both

cases Satisfiably (¬A) here includes those instances that are provably in ¬A, as well

as those that might possibly be ¬A.

The above has demonstrated that such form of negation-as-failure can be imple-

mented on top of purely open-world systems using queries. It is worth noting that to

our knowledge, none of the query languages: RDQL [8], SPARQL [6] and nRQL [2]

currently has any means to retrieve satisfiable results. It is probably easy for nRQL to

provide such features since it is based on an open world system, whereas RDQL and

SPARQL are based on a closed world of instance graphs in the first place.

There is still one remaining problem however. Using a powerful query interface to

collect instances that fall into such a "satisfiable" category is all well and good, but

there is still an asymmetry in the retrieval method of these results, compare to in-

stance retrieval with any other classes. For external entities to know the specifics of

how the knowledge is defined and to issue context dependent queries is a non-starter.

From the end user’s point of view, the ability to make assertions using these query

predicates or the K-operator will be invaluable.

5.2 Knowledge Base as a Black Box

The ideal case is where axioms such as (1) and (2) can be specified among other

OWL-DL axioms and/or SWRL rules [4], and the results are simply retrieved by ask-

ing for members of “RootCauses” and “MidRange” respectively. Furthermore, mem-

bers of such classes may in turn participate in further classification by other axioms in

the ontology. That way, the best of both open and closed worlds is available to the

user; the user can specify knowledge in a way more natural to him/her. For example,

at the language level a user could say that the default for the class of routers is “Mid-

Range”. How such “rule” is implemented should be opaque to the user. One approach

is for any new instances of routers that are not known to be High/Low-End be explic-

itly asserted to be instances of “MidRange”; Thereby achieving encapsulation from

the point of view of specification, as well as symmetry from the point of view of que-

rying.

Note that the notion of “if x is a result of a query q then assert something about x”

is essentially a rule. Thus what we are proposing here is inline with the layered ap-

proach as expressed in [5]: rules are implemented on top of an open-world language,

taking advantage of the formal definition of atoms that such language offers.

5.3 Semantic Model Driven Architecture

The use cases reported here are only two of many areas where the use of OWL is ex-

plored in the commercial world. It is becoming clearer to many enterprises that exist-

ing integration technologies are not reducing costs and are not delivering the required

information. Technologies such as data warehousing, extract, transform and load

(ETL), enterprise application integration (EAI) and enterprise information integration

(EII) have created more versions of the truth about their data than is desirable. Each

technology requires a separate modeling and mapping effort, with individual proprie-

tary models of business domain knowledge. With most technologies focusing mainly

at the syntactic level, semantic integration is becoming a hot topic [7].

The vision of a semantically integrated infrastructure has two parts: 1) All subsys-

tems employ a single formalism to specify knowledge; 2) all data meaning are

mapped to a single semantic model, but operational data remains decentralized resid-

ing within their respective operational systems. All existing integration technologies

will remain in operation, but with their models mapped to each other via the semantic

model. This model serves as the central component offering a single version of truth

of data. This is the vision of a semantic model driven architecture. Being an interna-

tional standard grounded on formal logic, OWL is at the heart of this vision.

6 Conclusions

Commercial enterprises are currently exploring semantic knowledge driven archi-

tecture and web services. The main contribution of this paper is the detail description

of two commercial use cases, both aimed to exploit the power of open-world seman-

tics and the OWL-DL standard. We have outlined the necessity of a notion of nega-

tion-as-failure within these use cases. A concept constructor ¬naf is introduced which

applies equally to classes as well as instances. It is similar to the K-operator and we

have provided an implementation approach using only open-world query answering

services. We believe an extension to OWL with these features will allow a wider and

faster adoption of the standard.

References

1. Donini, F. M., Lenzerini, M., Nardi, D., Schaerf, A., Nutt, W.: An epistemic operator for

description logics. Artificial Intelligence. 100(1-2):225-274. (1998)

2. Haarslev, V., M¨oller, R., Wessel, M.: Querying the Semantic Web with Racer + nRQL. In

Proc. of the KI-2004 Intl. Workshop on Applications of Description Logics (ADL’04),

(2004.)

3. Hawke, S.: Report from the W3C Workshop on Rule Languages for Interoperability. Avail-

able at: http://www.w3.org/2004/12/rules-ws/report/. (2005)

4. Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A Se-

mantic Web Rule Language Combining OWL and RuleML. Available at: http://www.da-

ml.org/2003/11/swrl/. (2003)

5. Horrocks, I., Parsia, B., Patel-Schneider, P., Hendler, J.: Semantic Web Architecture: Stack

or Two Towers? Available at: http://www.cs.man.ac.uk/~horrocks/Publications/download-

/2005/HPPH05.pdf. (2005)

6. Prud'hommeaux, E., Seaborne, A.,: SPARQL Query Language for RDF. W3C Working

Draft, Available at http://www.w3.org/TR/rdf-sparql-query/. (2005)

7. Raden, N.: Start Making Sense: Get From Data To Semantic Integration. Intelligent Enter-

prises. October, 2005. Available At: http://www.intelligententerprise.com/showArticle.jhtml

?articleID=171000640. (2005)

8. Seaborne, A.: RDQL - A Query Language for RDF. W3C Member Submission. Available

at: http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/. (2004)

