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Abstract. We report on experiences using OWL DL in the design of an ex-
change format for biological pathway information. Although the working group 
charged with this task was not initially very familiar with OWL and knew that 
the technology around OWL wasn't mature, they chose it because of its ability 
to express complex relationships in a formal and computable manner. The sub-
sequent journey has not been smooth. Delightful discoveries about OWL have 
alternated with surprises about how difficult it is to operate correctly inside 
open world description logics and the Semantic Web generally. This paper high-
lights experience that may be of interest to the OWL community, including on-
tology developers, tool developers, and those interested in promoting the adop-
tion of the Semantic Web. 

1 Introduction 

In 2001 the biomolecular pathways research community rallied around the idea of 
creating an open pathways resource akin to GenBank [1], the hugely successful com-
munity resource for genetics. The resource would collect pathway information, that is, 
information about interactions among biological entities and their effects on larger 
biological phenomena. Such a resource would require a common format for represen-
tation and transmission of pathway information, so a working group formed to de-
velop such a format. The initial working group consisted mostly of representatives of 
diverse and already mature data curation and compilation efforts: BioCyc [2], WIT [3] 
(now Puma2), and BIND [4]. Later it grew to include several more pathway data 
sources, parties interested in biological knowledge representation, and users and inte-
grators of pathway information [5]. 

For background, and to illustrate various issues involving OWL [6] use and adop-
tion, we will discuss some activities of the working group. However, the views ex-
pressed in this paper are those of the authors and do not necessarily represent those of 
the working group.  



Several design criteria guide the development of the exchange format. It is to be a 
machine computable formal representation to enhance the utility of the data and en-
able reasoning. It should interface with existing standards to enable interoperability. It 
should be extensible in order to have the capacity to evolve with scientific knowledge.  
It should support expressive new curation adequate to represent the pathway knowl-
edge expressed in scientific papers. Finally, because each participating source of 
pathway information represents its descriptions using its own semantics and data 
format, the common format should be suitable as a translation target for existing data.  

Few in the working group had any prior stake in RDF [7], OWL, description logics, 
standards projects, or the Semantic Web. The focus was on exchanging application-
level information; for many, work on the exchange format was a necessary evil.  

The group was not initially very familiar with OWL, but after a one-day tutorial [8] 
it was sufficiently impressed by OWL’s merits to take it seriously as a specification 
vehicle. OWL’s ability to express complex relationships and constraints was judged a 
match to the group’s goals, and they chose OWL DL (over XML Schema) as its on-
tology framework. The decision was not without controversy; XML Schema was 
favored by some because of its already wide adoption and abundance of tools. In the 
end OWL won because of its expressiveness and the expectation that if adopted by the 
W3C [9] tools and wide acceptance would follow. 

The group initially used OWL as if it were like any of the other schema definition 
tools such as relational databases and XML Schema. There were certain expectations 
taken from these tools, such as the closed world assumption. In particular, they ex-
pected to simply invent a new, federated schema that unified common elements of the 
schemas of the existing data sources and was similar in kind to the schemas of the 
existing data sources. Some use of OWL’s new features was expected, even though it 
wasn’t clear how, when, or whether to use them. But no one was considering radical 
change relative to the way the existing schemas had been built, such as mapping data 
records to classes instead of instances. 

In this paper we document a variety of issues that we hope contribute to the ongo-
ing discussion of the use of ontologies in the context of the Semantic Web. 

2 Ambushed by the open world assumption 

The open world assumption says that anything not known to be true or false might 
become so as a result of new information. There are positive and negative aspects of 
OWL’s open world assumption with respect to the stated design criteria. On the posi-
tive side, the open world assumption seems particularly fitting in a domain that is 
characterized by information that is incomplete either because of limits in the state of 
knowledge or omissions inherent in curation processes. One can imagine a scenario in 
which this partial knowledge is augmented by subsequent contributors, in line with 
the goals of the Semantic Web.  

On the negative side, the open world assumption has generated problems that were 
not anticipated: 

No way to require that information be supplied.  Sometimes information that is to 
be exchanged cannot, by its nature, be reconstructed or added to. Consider a reference 



to a paper. Currently this is represented by a pair of string valued properties: database 
name and database identifier. One wants to say that that each of these properties needs 
to have values if one is to make any sense of the reference. OWL can express some-
thing like this using minCardinality constraints. However, if one of the properties 
doesn’t have a value, no OWL validator will complain, since under the open world 
assumption, the property could be asserted later. But consider the task of annotating 
that an interaction between two proteins was noted in a particular journal article. If 
one says that the database is PubMed but doesn't fill in the article identifier, one can-
not identify the article.  What one wants is the ability to express that within a given 
scope, certain restrictions must be verifiable with the assertions expressed. That way 
one could express, for instance, that within the assertions in a single file, or at a single 
URL, any reference to a publication must have values for both the publication and 
identifier properties. Note that while this corresponds to "closing the world" over the 
specified scope, there is no requirement that it stay closed, nor that it affect the se-
mantics of the document outside the scope.  

No convenient way to assert that information is complete. On the other side of the 
open world assumption is the situation where we have a property whose value is com-
pletely known. For example, in the specification of an instance of some protein com-
plexes, we want to assert that we have listed all the components of the complex. In 
order to do this we need to "close" the components role, making such a complex an 
instance of a restriction of a cardinality constraint on the components1. In Protégé, for 
instance, there is no convenient way to assert such a constraint. 

Unique name assumption difficult to understand and maintain. Removing the 
unique name assumption is a useful idea on the greater Semantic Web, where it is 
likely that people can name the same concept in different ways. However, within a 
single source of information we generally know that different names name different 
objects. It is inconvenient to maintain all the differentFrom assertions as a document 
evolves. It is also tricky to assess the consequences of getting this wrong. This is 
another case where the concept of scope might be useful, specifically the ability to 
assert that all names within a scope represent different things. 

Novices are confused about properties that are not asserted. For example, in the 
description of a chemical reaction there is a property for stoichiometry (multiplicity of 
a reactant). Since the most common case is that stoichiometry is 1, it was suggested 
that in order to make the documents less verbose that an unasserted stoichiometry 
would be taken to mean 1. However, in OWL an unasserted property means that the 
value is unknown. This was a surprise to most of the group. While we would like to 
propose some technical fix for this, we can’t think of one. 

                                                             
1 Closing a role by adding a property restriction type to an instance: 
Individual(Instance type(complex) type(restriction(component cardinality(2))) 
  

 



3 Using other ontologies 

There has been substantial prior work on developing ontologies relevant to repre-
senting pathway information and the exchange format would like to be able to take 
advantage of this work. For example, post-translational modifications are described in 
RESID [10] and portions of PSI MI [11], while cellular locations are described in 
portions of the Gene Ontology (GO) [12]. How these external entities to be used in the 
ontology?  

Few of these ontologies are provided as OWL DL. Currently, terms from such on-
tologies are represented as values of two properties, one giving a name for the vo-
cabulary from which the term was taken, and the other identifying the term in the 
vocabulary. Unfortunately for the Semantic Web, neither the terms nor the names of 
the vocabularies are URIs. Moreover, external terms are not just meaningless data; 
some understanding of them is required for reasoning and validation. Representing 
terms in this way, semantic relations, such as the containment relationship between 
cellular locations, are lost. Some properties should be restricted to particular classes in 
GO; a property denoting a cellular location cannot be filled with a term which is a 
subclass of molecular function. 

 An alternative approach would be to first create OWL versions of the needed on-
tologies and then import them, thereby making all available information directly ac-
cessible. As an experiment one of the authors (AR) wrote translators to convert the 
relevant portions of PSI MI to OWL DL. We first identified a portion of the vocabu-
lary that would be used to annotate post-translational modifications, namely the terms 
in the hierarchy below MI:0120 other than MI:0179. The is_a relationships were 
translated into subclass relations in OWL. Annotation properties were used to record 
additional information about the terms, such as synonyms, English definitions, and 
identifiers. 

Another question is the treatment of changes to the external ontology. If we choose 
to have references to terms in the external ontology, we may be left with incorrect 
identifiers in our documents when terms in the external ontology are deleted or depre-
cated. This is particularly an issue with the rapidly changing Gene Ontology.  How-
ever, if we translate and import an external ontology, new and changed terms will not 
be available for use until we update our translation. On the other hand, a user of our 
ontology will benefit from the stability of knowing the potential term set in advance. 

4 Getting validation 

The typical software engineer expects a rapid edit-compile-debug development cycle, 
and on starting to work with OWL, one expects to be able to iterate in a similar man-
ner. In place of compilation one would like to check that the file is formatted cor-
rectly, that the definitions make sense, and that the inferences one expects to make 
can in fact be made. Unfortunately one is immediately hindered by the inability to 
reliably do so.  

Checking that the file is formatted correctly and that the definitions make sense is 
the role of a validator. One expects a validator to assess whether the file complies 



with the specification and to generate specific detailed reports when it doesn’t. Not 
having such a tool makes it difficult for data providers to check whether their code is 
generating correct OWL.  

Checking that the inferences one expects to make can in fact be made is the func-
tion of a reasoner. For OWL DL we expect that a reasoner is able to test whether the 
ontology (including both classes and instances) is consistent, to respond to queries 
asking for equivalences, superclasses and subclasses of a given class, what instances 
are members of a class, what the classes of an instance are, and what the values of 
properties are. Not having a reasoner makes it difficult for the novice ontologist to 
check whether they understand the implications of their modeling choices. Without a 
reasoner one cannot build clients of the exchange format that can take advantage of 
the promised expressiveness of OWL.  Since a good validator must make some use of 
a reasoner, lack of a reasoner hinders efforts to build a robust validator. 

In trying to find reasoners and validators we first checked the OWL test site [13], 
which was not reassuring. Based on the test results presented there, it seems that a 
reasoner that is complete with respect to OWL DL does not yet exist.  

We reviewed some of the available tools, using the most recent versions available 
when we did the evaluation in mid July, 2005: Protégé [14], SWOOP [15] with the 
Pellet [16] reasoner, Racer Pro [17] (both as a DIG [18] server  for Protégé  and as a 
standalone application), the BBN OWL Validator (vOWLidator) [19], and FaCT 
[20,21]. In response to reviewer’s comments we also reviewed the OWL API [22], the 
WonderWeb OWL Ontology Validator [23] and the Pellet reasoner (standalone) using 
the versions available at the beginning of October, 2005. All these systems had issues.  

First we explored validation and reasoning using Protégé. Protégé does some rea-
soning on its own and also provides an interface to external DIG reasoners. Protégé's 
native validation and reasoning support is spotty. It doesn't do subsumption reasoning. 
It does do some role reasoning, such as inferring the values of properties when sub-
Property values are asserted, but it doesn't mark inferred values distinctly in the inter-
face, and doesn't serialize them to the saved OWL file. We think this patchwork ap-
proach to reasoning support will be confusing to the general user.  

Using external reasoners from Protege is unsatisfactory because the DIG protocol 
doesn't support some constructs available in OWL DL, so one gets many spurious 
warnings, leading one to question the completeness of the validation.  In fact it isn't. 
Consider the following ontology: 
         
DatatypeProperty(Property1 range(xsd:string)) 
Class (Class1 partial)  
Class (Class2 partial Class1 restriction(Property1 minCardinality(1))) 
Class (Class3 partial Class2 restriction(Property1 maxCardinality(0))) 

 
When we check ontology consistency we get the message Not able to convert 

datatype property cardinality restrictions to DIG (the language used to communicate 
with the reasoner). Ignoring this restriction and attempting to continue. Because of 
this, Protégé is not able to detect that Class3 is inconsistent. We tested this both with 
FaCT++ and the Pellet reasoner in DIG mode in late September, 2005. The Pellet web 
form, which accepts OWL directly, correctly notes the inconsistency. 

SWOOP was not particularly robust. Enabling the reasoner while working on an 
ontology with an inconsistency often caused application errors that could not be re-



covered from. The debugging alpha version that we used did supply us, in one case, 
with a chain of assertions that supposedly led to an inconsistency. However, it was 
difficult to follow the logic, and as the inconsistency was not noted by either Racer or 
FaCT, we assumed that it was spurious.  More detail can be found on the BioPAX 
wiki [24]. 

The Pellet reasoner, used as a standalone tool, looks very promising. In a recent 
test we found it useful in validating and debugging a large set of instances (several 
megabytes), issuing informative comments describing problems. It is not without 
limitations. In the days before finishing this paper, we identified two issues. To the 
credit of the developers, these were promptly fixed. However we are still able to find 
examples which provoke incorrect behavior. The following example is incorrectly 
classified as OWL DL. It is OWL FULL because of the cardinality constraint on the 
transitive property part_of. 

 
ObjectProperty(part_of Transitive domain(Class1) range(Class1)) 
Class(Class1 partial restriction(part_of cardinality(1))) 
 
vOWLidator does not recognize oneOf dataRange restrictions, and so it generates 

many spurious complaints that need to be examined and filtered out in order to find 
useful warnings. It doesn't check certain RDF/XML requirements such as the need for 
a data type on a property value whenever the property’s range is restricted to a certain 
data type. When errors or warnings are reported, the notes often refer to the internal 
identifiers of blank nodes, which makes it difficult to find the source of the error in 
the ontology.  

Racer Pro seemed robust and reliable at detecting inconsistencies and errors in 
some large OWL files. However, whereas it was able to detect inconsistencies (even 
in a property data type), it didn't report anything more than that the file was inconsis-
tent. This made it difficult to find the source of the error. As we were trying to check 
an 18MB file containing the pathway content from HumanCyc [25], this wasn't very 
useful. Finally, Racer Pro is a commercial product. While some free licenses are 
available, they come under terms that were not satisfied by all members of the group.  

FaCT is listed as an OWL DL reasoner. We downloaded the open source Common 
Lisp implementation hoping to use that. However,  it has no defined OWL support, 
nor were we able to find a publication that showed how to translate even OWL DL 
TBox (class) reasoning into the API used by FaCT. We used Wilbur [26] to read the 
OWL RDF and wrote code (probably buggy) that translated the OWL primitives into 
the FaCT API and did get some useful information from it – the detection of an unsat-
isfiable class caused by multiple inheritance from two disjoint classes. Since we had 
access to the source, we were able to turn on debugging switches to more easily iden-
tify the source of the problem. However, since FaCT only supports TBox reasoning, 
we were unable to use it to validate any of our pathway data which primarily consists 
of instances. 

Ian Horrocks pointed us to FaCT++ [27] as the current incarnation of FaCT, suit-
able for OWL reasoning. However, FaCT++ is described as a reasoner for OWL Lite, 



and the status of using it as a reasoner for OWL DL was not, until recently1, clear to 
us. We tried a recent version of FaCT++ DIG server within Protégé. In this mode it 
suffers from the noted limitations of the OWL to DIG translation. 

We were unsuccessful at retrieving inferred property values with the OWL API. 
For example, values of a subProperty are also considered to be values of the property 
they descend from. In the following definition there are two properties Property1 and 
a subProperty of it: Property2. The single instance has a value for Property2. We 
expect that one value of Property1 would have this value. As best  we could tell, one 
uses the function anOwlInstance.getDataPropertyValues() to retrieve property values 
for an instance. However this function returned no value for the parent property Prop-
erty1. 

 
DatatypeProperty(Property1 domain(Class) range(xsd:int)) 
DatatypeProperty(Property2) 
SubPropertyOf(Property2 Property1) 
Class(Class partial) 
Individual(Instance1 type(Class) 
 value(Property2 "1"^^<http://www.w3.org/2001/XMLSchema#int>)) 

 
The WonderWeb OWL Ontology Validator also had trouble with the example that 

generates DIG warnings in Protégé, shown above. It also considers that ontology 
consistent. We speculate that it suffers the same DIG imposed limitation on cardinal-
ity constraints as noted above. However, unlike Protégé, no diagnostics are given. In 
addition, it does not detect missing rdf:datatype statements, or values with inconsis-
tent data types. For example, the following ontology is incorrectly considered valid. 
In fact any value and any rdf:dataType for Property1 is considered valid. 

 
DatatypeProperty(Property1 domain(Class) range(xsd:int)) 
Class(Class partial) 
Individual(Instance1 type(Class) 
 value(Property1 "1.1"^^<http://www.w3.org/2001/XMLSchema#float>)) 

 
Some constraints not expressible in OWL. As it turns out, OWL DL can't express 

all the constraints we care about in our domain. [28,29] For example, in a chemical 
reaction, matter is conserved, so there is a constraint that the total mass of the reac-
tants is the same as the total mass of the products. Since we can’t express such a con-
straint in OWL DL, we plan to have a separate, domain specific validator to ensure 
that such constraints are satisfied.  We expect that other projects would be in a similar 
situation. However, we want to check as much as possible in OWL so as to reduce the 
effort in creating this auxiliary validator and to make those constraints known to 
reasoners.  

                                                             
1 Ian Horrocks (personal communication) notes that there have been recent advances in the 

algorithms for reasoning with OWL DL, that these have been implemented in the Pellet sys-
tem, and that they will soon be available in FaCT++ 



5 What, in the world, do we mean? 

The data to be encoded in RDF/OWL consists of records describing molecular enti-
ties (such as metabolites and proteins), molecular complexes, metabolic reactions, and 
signaling pathways. It seems reasonable for RDF individuals to play the role of re-
cords, with properties acting as record fields. The ontology then plays the role of 
schema since it specifies what kinds of data can be the various properties of an object, 
and which objects can link to what other kinds of objects.  

Database designers don’t generally spend much time thinking about denotation and 
truth, but RDF and OWL impose a sort of moral imperative to address these issues 
somehow. In our case, the content being represented is about the world – so the  world 
should be a model of our logical system, in the sense of the OWL formal semantics 
[30]. The challenge is to figure out what the correspondence is. The fact that we are 
designing an exchange language makes this question that much more important. Con-
sider the alternative. If the specification doesn’t carefully define the mapping of 
classes and instances to biological phenomena, each provider of information would 
have its own mapping and it would fall to clients using more than one source to figure 
out how to relate terms from the various sources. This would defeat the purpose of 
creating an exchange format. Thus we need to define what, in the world, our classes 
and instances correspond to. Doing so was not something the working group had 
anticipated. 

The issue was first raised when trying to understand what it meant to refer to a 
given physical entity instance in more than one reaction. On the one hand, there is a 
desire to reuse instances because they are rather large, including information such as 
synonyms, chemical structure and so on. On the other hand, there is the intuition that 
referring to the same instance means referring to the same thing in the world. Since 
one can reuse the same instance of protein to describe interactions that take place in 
different places, it can’t mean the same physical protein. If “same instance” can’t 
mean “same protein”, what does it mean?  

To answer this you need to know what a protein “is” and, by implication, what it 
takes for two proteins to be different. Sameness could mean a particular protein mole-
cule situated in space and time; a quantity or “pool” of protein belonging to some 
unspecified compartment model; or an idealized single molecule participating in a 
collective scientific drama (“P53 has a role in …”). Differentness might or might not 
hinge on genetic polymorphisms, mutations, or post-translational modifications.  

To further complicate the issue, consider the task of representing a homodimer, i.e. 
a molecular complex consisting of two copies of the same molecule. In this case we 
can’t have both molecules be the same instance – if we did that we would be asserting 
the same component property twice, which is the same as saying it once in RDF. It 
was proposed that in this case we could use stoichiometry to represent the multiplic-
ity. Consider then the situation where one of the two proteins is modified in a reac-
tion, e.g. phosphorylated. Now the initial single instance becomes two instances.  

If instances don’t represent single things, should they not be represented as classes? 
If we use classes instead of instances to represent reactants, OWL DL forces us to use 
classes to represent reactions and other higher order entities, since there is a limited 
repertoire of ways to relate classes to one another. We know that if we only use 



classes then our expressiveness is diminished compared to using instances, since in-
stances can form cyclic graphs, but classes can’t. Do we need that expressivness? 

Absent further guidance we are having trouble deciding where to draw the line.  

6 Conclusions and recommendations 

OWL continues to be the basis of BioPAX working group’s specification efforts. 
Ontologies, instance data, documentation, and further discussion may be found online 
at the group’s wiki, http://biopaxwiki.org/. However, in spite of the group’s 
experience in biological knowledge representation,  bioinformatics, software 
engineering, and database design, it encountered some challenging problems.  We 
think problems similar to those described above will be common as more groups try 
to interact with the Semantic Web. 

Semantic Web technology is not yet mature. Users of OWL should expect to en-
gage OWL tool developers, expecting and reporting bugs and challenging developers 
to address their needs. Designers and advocates of the Semantic Web need to get 
involved in more concrete projects to gain a better understanding of their audience.  

In order to support efforts to refer to objects in RDF,  database providers of all 
sorts should be encouraged to define URIs that identify their objects. Correspondingly 
the Semantic Web community should supply guidance on how to do so, and provide 
strategies for OWL users to cope with references to such entities when they are not 
supplied. 

There will be a need for domain specific validation in many cases. In order to 
minimize the effort involved with implementing systems to do this, cases such as 
those we outline in our discussion of open world issues could be reviewed. Where 
appropriate, additions to the specification, such as a theory of scope and statements 
over a scope, could address common cases that are somewhere between the limits of 
what is currently expressible in OWL and checks that can only be done with knowl-
edge of the specific domain.  

We can't emphasize enough the need for a freely available, open source, complete 
and accurate OWL validator and reasoner as a tool for making progress in using and 
understanding OWL. Since so many of the concepts that it uses are new to a general 
audience, and the implications of using various features non-obvious, lack of such a 
validator makes progress by experimentation extremely difficult. While Pellet seems 
to be a strong candidate for filling that role, we found it difficult to identify it as such 
given a wide choice of candidate systems. More effort needs to be devoted to main-
taining a solid test suite and providing up-to-date reports on the status of the various 
systems. Finally, simply detecting problems is not enough. More research needs to be 
done to identify strategies to explain the reasons for inconsistencies and errors in 
ways that users can understand so they can learn enough to fix them.  

The kinds of relationships that need to be modeled in biology are varied and go be-
yond class/subclass relationships, [31,32] for example part/whole relationships and 
derives-from, used to describe development of organisms. There is a wide gap be-
tween the expressiveness (and tractability) of OWL DL and OWL Full. OWL would 
benefit from the elaboration of other levels between these two, particularly if such 



levels could afford additional expressiveness needed for biological description while 
still having some guarantees around the abilities of reasoners.  

We are excited that RDF and OWL are not neutral data representation formats, but 
modes of expression that have the character of assertion. However, this comes at a 
cost. Someone generating RDF triples should feel accountable both for the meaning 
and the truth of their assertions. But this can be hard work.  Because of this, there is a 
temptation to avoid defining terms precisely. But we're playing a new game now: we 
are obligated to document what we mean.  

This is a double-edged  sword, of course. On the one hand, hardly anyone wants to 
work out the details of the model since it appears to be an unglamorous, low-yield bit 
of intellectual drudgery and a threat to progress.  On the other hand, if we're success-
ful at defining our terms in such a way that our triples become plausible assertions, 
then users of the information will benefit enormously - in particular, they will be able 
to federate data and do their own inference without having to reverse engineer the 
meaning of each data source. The high quality technical framework that OWL pro-
vides forces a good technical approach.   In the words of W3C Semantic Web Activity 
Lead Eric Miller, “You do it right once, and everyone benefits.” 

7 Acknowledgments 

Discussions with Matthias Samwalt, Imre Vastrik, Dan Corwin, Frank Schaerer and 
Stan Letovsky were helpful and illuminating.  Thanks to Jeremy Zucker for reviewing 
the manuscript.  BioPAX is the work of the BioPAX working group: Mirit Aladjem, 
Gary D. Bader, Erik Brauner, Michael P. Cary, Dan Corwin, Kam Dahlquist, Emek 
Demir, Peter D'Eustachio, Ken Fukuda, Frank Gibbons, Marc Gillespie, Robert Gold-
berg, Chris Hogue, Michael Hucka, Geeta Joshi-Tope, David Kane, Peter Karp, 
Christian Lemer, Joanne Luciano, Natalia Maltsev, Debbie Marks, Eric Neumann, 
Suzanne Paley, Elgar Pichler, John Pick, Jonathan Rees, Aviv Regev, Alan Rutten-
berg, Andrey Rzhetsky, Chris Sander, Vincent Schachter, Imran Shah, Andrea Splen-
diani, Mustafa Syed, Edgar Wingender, Guanming Wu, Jeremy Zucker. (The working 
group is a dynamic community. We apologize if we have omitted a member from this 
list.) JSL gratefully acknowledges the Office of Biological and Environmental Re-
search Genomics: GTL Program (grant #DE-FG02–04ER63931), George Church, 
Robert Stevens and the National Science Foundation (grant #IIS-0542041) for their 
generous support. 

References 
 

1. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Rapp, B.A., Wheeler, D.L.: 
GenBank. Nucleic Acids Res. 28 (2000) 15-18 
 



 
2. Krieger, C.J. et al. MetaCyc: A Multiorganism Database of Metabolic Pathways and En-

zymes. Nucleic Acids Res. 32 (2004) D438–442 
3. Overbeek, R. et al.: WIT: Integrated System for High-Throughput Genome Sequence Analy-

sis and Metabolic Reconstruction. Nucleic Acids Res. 28 (2000) 123–125 
4. Bader, G.D. et al.: BIND: the Biomolecular Interaction Network Database. Nucleic Acids 

Res.  31 (2003) 248–250 
5.  http://biopaxwiki.org/ 
6. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-

Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference, 10 February 2004. 
Available at http://www.w3.org/TR/owl-ref 

7. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts and Abstract 
Syntax, W3C Recommendation, 10 February 2004. Available at 
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210 

8.  http://www.biopax.org/Docs/2003-02-20_OntologyTutorial.ppt 
9.  http://w3.org  
10. Garavelli, J.S.: The RESID Database of Protein Modifications: 2003 developments 

Nucleic Acids Res.  31 (2003) 499-501  
11. Hermjakob, H. et al.: The HUPO PSI's Molecular Interaction Format – A Community Stan-

dard for the Representation of Protein Interaction Data. Nat. Biotechnol. 22 (2004) 177–183 
12. The Gene Ontology consortium: Gene ontology: Tool for the Unification of Biology. Nat. 

Genet. 25 (2000) 25–29 
13. http://www.w3.org/2003/08/owl-systems/test-results-out 
14. Noy, N. F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R. W., Musen, M. A.: Creating 

Semantic Web Contents with Protégé-2000. IEEE Intelligent Systems 16 (2001) 60-71 
15. Kalyanpur, A., Bijan Parsia, B., Hendler. J.: A Tool for Working with Web Ontologies. 

International Journal on Semantic Web and Information Systems,  1 (2005)  
16. Sirin, E., Parsia, B.: Pellet: An OWL DL Reasoner. Description Logics 2004, CEUR Work-

shop Proceedings 104 (2004) 
17. Haarslev, V., Möller, R.: RACER System Description, Lecture Notes in Computer Science, 

2083 (2001) 701 
18. Bechhofer, S.: The DIG Description Logic Interface: DIG/1.1, available at 

http://dlweb.man.ac.uk/dig/2003/02/interface.pdf 
19. http://projects.semwebcentral.org/projects/vowlidator/ 
20. Horrocks. I.: Using an Expressive Description Logic: FaCT or Fiction? In: Cohn, A. G., 

Schubert, L., Shapiro, S. C. (eds): Proc. of KR-98. Morgan Kaufmann Publishers, San 
Francisco, California (1998) 636-647 

21. FaCT implementation available at http://www.cs.man.ac.uk/~horrocks/FaCT/ 
22. http://owl.man.ac.uk/api.shtml 
23. http://phoebus.cs.man.ac.uk:9999/OWL/Validator 
24. http://biopaxwiki.org/cgi-bin/moin.cgi/Known_OWL_validation_issues_with_vowlidator 
25. Romero, P., Wagg, J., Green, M.L., Kaiser, D., Krummenacker, M. Karp, P.D.: Computa-

tional Prediction of Human Metabolic Pathways from the Complete Human Genome, Ge-
nome Biology 6  (2004) R2 R2.1-17 

26. Lassila, O.: Wilbur Semantic Web Toolkit for CLOS. Available at  
http://wilbur-rdf.sourceforge.net/ 

27. Tsarkov, D., Horrocks, I.: Fact++ implementation. Available at: 
http://owl.man.ac.uk/factplusplus/ 

28. http://biopaxwiki.org/cgi-bin/moin.cgi/To_OWL_or_not_to_OWL 
29. http://biopaxwiki.org/cgi-bin/moin.cgi/best_practices 

 



 
30. Patel-Schneider, P.F., Hayes, P., Horrocks, I. (ed.): OWL Web Ontology Language 

�Semantics and Abstract Syntax, W3C Recommendation, February 2004. Available at 
http://www.w3.org/TR/owl-semantics/ 

31. Smith B., Ceusters W., Klagges B., Kohler J., Kumar A., Lomax J., Mungall C.J., Neuhaus 
F., Rector A., Rosse C.: Relations in Biomedical Ontologies. Genome Biology 6 (2005) 
R46. 

32. Smith B.: The Logic of Biological Classification and the Foundations of Biomedical Ontol-
ogy. Available at: http://ontology.buffalo.edu/bio/logic_of_classes.pdf 


