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Abstract. In real application scenarios, input data and knowledge is
often vague. Likewise, it is often the case that exact reasoning over data
is impossible due to complex dependencies between input data and tar-
get outputs. For practical applications, however, good approximations
often suffice, and efficient calculation of an approximate answer is often
preferable over complex processing which may take a long time to come
up with an exact answer. Fuzzy logic supports both features by provid-
ing fuzzy membership functions and fuzzy IF-THEN rule bases. In this
paper, we show how fuzzy membership functions and fuzzy rules can be
modeled by means of an appropriate description logic and how this can
be employed for query answering.

1 Introduction

In the last decade a substantial amount of work has been carried out in the
context of Description Logics (DLs)[1]. Despite their growing popularity, rela-
tive little work has been done in extending them to the management of vague
information. In many application domains, not only the membership of an indi-
vidual to a set is nonrigid, but also the transition between the memberships of
an individual from one set to another is smooth. Consider, for example, height
of a human. Small children grow, but when do they stop to be small? So the
transition from short humans to humans of average height is rather smooth and
not crisp. Such kinds of knowledge can be encoded using techniques from fuzzy
logic.

Vague knowledge, i.e. rules based on fuzzy logic, are also important from the
perspective of evaluating values of attributes that have very complex dependen-
cies with other attribute values. Such rules play an important role in application
domains, where a good approximation of the desired value of an attribute is
acceptable. For example, consider the controlling of a train. It is desired, that
when a train arrives at station, it halts at a certain fixed position. However,
calculating how exactly the brake should be applied at what position in which
speed so that the passengers can still sit comfortable etc. is difficult. However,
considering that it is acceptable if the train stops a small distance before or after
the mark, automatic control of the train is much easier.

Fuzzy logic, first introduced by Zadeh in [2, 3], provides answers to both the
problems. On the one hand, the fuzzy sets allow to model vague memberships of



individuals to sets. On the other hand, fuzzy IF-THEN rules allow to evaluate
good approximations of desired attribute values in a very efficient way [2, 3].

In this paper, we will show how fuzzy IF-THEN rules can be modeled using
description logics with concrete domains and aggregates. The exposition serves
two purposes. On the one hand, it serves as a modeling example for description
logics and the usefulness of concrete domains and aggregates. On the other hand,
it provides the first steps toward the implementation of fuzzy rules systems with
the description logic knowledge representation paradigm. Due to the advent of
the semantic web, this can be seen as a step toward the sharing of sophisticated
structured knowledge by means of ontology languages.

The paper is structured as follows. First, we give a short introduction to the
description logic with concrete domains and aggregates in section 2. In section 3,
we show how fuzzy membership functions can be modeled and how membership
can be calculated. In section 4, we show how fuzzy rules can be modeled and
how the degree of fulfillment of a fuzzy rule can be calculated. In section 5, we
show how the modeled fuzzy rules can be used for answering DL queries. Finally,
we conclude in section 7 after discussing some related work in section 6.

2 Description Logics with Aggregates and Concrete
Domains

Description logics with concrete domains was first introduced in [4]. It was then
extended by aggregates in [5, 6].

Definition 1. A concrete domain D = (dom(D), pred(D)) consists of a set
dom(D) (the domain), and a set of predicate symbols pred(D). Each predicate
symbol P ∈ pred(D) is associated with an arity n and an n-ary relation PD ⊆
dom(D)n.

Definition 2. Let NC , NR and NF be disjoint sets of concept, role and fea-
ture1 names. The set of ALC(D)-concepts is the smallest set such that (1) every
concept name is a concept and (2) if C and D are concepts, R is a role or a fea-
ture name, P ∈ pred(D) is an n-ary predicate name, and u1, . . . , un are feature
chains2, then (C uD), (C tD), (¬C), (∀R.C), (∃R.C) and P (u1, . . . , un) are
concepts.

Definition 3. The notion of a concrete domain D as introduced in Definition 1
is extended by a set of aggregation functions agg(D), where each Γ ∈ agg(D) is
associated with a partial function ΓD from the set of multisets of dom(D) into
dom(D). Such an extended concrete domain is denoted by Σ.

The set of concrete features is inductively defined as follows. (1) Each feature
name f ∈ NF is a concrete feature. (2) a feature chain f1 . . . fn is a concrete
features, and (3) an aggregated feature f1 . . . fnΓ (R ◦ f) is a concrete feature,
where f, f1 . . . fn are feature names, and Γ ∈ agg(Σ) is an aggregation function.
1 Features are just functional roles.
2 A feature chain [4] u is a chain of functional roles, e.g. (father age).



Finally, ALC(Σ) concepts are obtained from ALC(D)-concepts by allowing
additionally the use of concrete features fi in predicated restrictions P (f1 . . . fn).

Note, that the description logic ALC(Σ) is not decidable. For details about
the semantics of ALC(D) and ALC(Σ), and proof of undecidability of ALC(Σ),
we refer to [4–6].

3 Fuzzy Membership Functions

One of the biggest advantages of fuzzy logic is that fuzzy rules appeal to human
intuition, as they contain linguistic variables and linguistic terms like temperature
= cold rather than precise values like temperature = 5◦C. A fuzzy rule engine
mimics human reasoning as it works on such linguistic variables and linguistic
terms. Formally, a linguistic term is a membership function that maps each
possible value of the linguistic variable to a real number between 0 and 1. Each
linguistic term of a linguistic variable covers a range of possible values which the
linguistic variable can take, and the real advantage of fuzzy inferencing lies in
the smooth transition between linguistic terms covering adjacent value ranges.

3.1 Modeling Fuzzy Membership Functions
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Fig. 1. Example Membership Functions

Figure 1 shows the linguistic terms
cold, comfortable and warm modeled
as membership functions for a linguis-
tic variable Temperature.

Now let R[0,1] denote the set of
real numbers between 0 and 1. For a
concept v and a linguistic term t, we
define a membership function µv

t as
a finite and non-empty set of points3

(x, y) in R×R[0,1], where x is a num-
ber representing4 an individual of the
concept v. We will define next a con-
cept Point. For this purpose, we intro-
duce two concrete functional roles x and y, which assign the first respectively
second coordinate to the point. So we define the concept Point as

Point v ∃x.R u ∃y.R[0,1].

Similarly, we define a concept µ that denotes the set of membership functions. We
do this by means of a (non-functional) role p which assigns points to individuals,
as follows:5

µ v ∃p.Point.
3 I.e. we allow only membership functions which are piecewise linear.
4 Identifying individuals with real numbers simply serves to make computations sim-

pler, though it may appear to be counterintuitive in some cases.
5 µ v≥2 p.Point would be more precise if qualified number restrictions are available.



For a concept v, being viewed as a linguistic variable and having linguistic
terms t1, . . . , tn, we add n instances µv

t1 , . . . , µ
v
tn

of µ with corresponding roles
and points. We interpret the set of points associated with some µv

ti
as a piecewise

linear function. For a concept v being viewed as a linguistic variable, we denote
the set of its linguistic terms by v∗.

3.2 Calculating the Membership to a Fuzzy Set

Our membership functions are just sets of points in R2. Two points with adjacent
x-coordinates can be interpreted as a straight line. For a line between (x1, y1)
and (x2, y2), and a given x, we calculate y as6

y =

{
y1−y2
x1−x2

(x− x1) + y1, if x1 ≤ x < x2,

0, otherwise.
(1)

We model this by defining a concept YL, to capture the ys as described above.

YL v ∃y.R[0,1]

Now suppose that there are k membership functions for a concept v. We define
k relations from the concept v to the concept YL as follows:

v v
l

i∈{1,...,k}

∃ylµv
ti

.YL

An instance of a concept v will be in as many relation instances of ylµv
ti

with instances of YL as there are lines in the membership function µv
ti

. The
membership of an instance of the concept v to a membership function µv

ti
is then

just the sum of all such ys over all the lines of µv
ti

. To capture this information,
we define a functional role mµi

from v to R[0,1] as follows

v v
l

i∈{1,...,k}

∃mµv
ti

.R[0,1].

Finally, to ensure that the membership of an instance of the concept v via a
membership function µv

ti
is equal to the sum of all ys over all the lines of µv

ti
, we

set
v v

l

i∈{1,...,k}

P=(mµv
ti

, sum{ylµv
ti
◦ y}) (2)

where the predicate P=(x, y) is true iff x = y, and sum is the aggregate function
which computes the sum of its inputs.

Figure 2 shows the calculation of the membership of a concrete temperature
value 12 to the membership functions cold and comfortable. The membership
6 Note, the condition x < x2 (instead of x ≤ x2) ensures that a given x does not lie

on more than one line.
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Fig. 2. Membership Calculation

function cold consists of three points (i.e. two lines) and the membership function
comfortable consists of four points (i.e. three lines) (cf. figure 1). So, the instance
12 has two relations of type ylcold and three relations of type ylcomfortable to the
instances of YL.7 The values connected to an instance of YL via the role y are
calculated according to equation 1. Now, the memberships of the instance 12
via membership functions mcold and mcomfortable are calculated according to the
equation in axiom 2, i.e. mcold = 0+0.3 = 0.3 and mcomfortable = 0.7+0+0 = 0.7.

4 Fuzzy Rules

A fuzzy IF-THEN rule consists of an IF part (antecedent) and a THEN part
(consequent). The antecedent is a combination of terms, whereas the consequent
is exactly one term. In the antecedent, the terms can be combined by using
fuzzy conjunction, disjunction and negation. A term is an expression of the form
X = T , where X is a linguistic variable and T is one of its linguistic terms.

4.1 Modeling Fuzzy Rules

Since terms are the elementary building blocks of a fuzzy rule, we start with
modeling terms. As described above, a term consists of two parts, a linguistic
variable and a linguistic term. So, we model a concept Term as

Term v ∃r.> u ∃f.µ,

where the roles r and m are functional roles assigning linguistic variable resp.
linguistic term.
7 To save space, we abbreviate comfortable by comf. and do not show the structure

related to the membership function warm.



Terms can be combined via conjunction, disjunction and negation to term
expressions. Further, a term expression is fulfilled by an individual to a certain
degree. So, we define concepts TermExp, TermExp∧, TermExp∨ and TermExp¬
and extend the definition of the concept Term as follows, introducing also the
corresponding roles.

TermExp v ∃degree.R[0,1]

TermExp∧ v TermExp u ∃conjunct.TermExp
TermExp∨ v TermExp u ∃disjunct.TermExp
TermExp¬ v TermExp u ∃operand.TermExp

Term v TermExp

Note that the relation operand is a function role.
A rule has an antecedent and a consequent. The antecedent is a term expres-

sion and the consequent is a term. Further, a rule has a degree to which it is
fulfilled by an individual. So, we define a concept Rule as

Rule v ∃antecedent.TermExp u ∃consequent.Term u ∃degree.R[0,1].

The roles antecedent and consequent are functional roles.

4.2 Calculating the Degree of Fulfillment of a Rule

Since terms are the basic building blocks of a rule, the degree of fulfillment of a
rule depends ultimately on the degrees of fulfillment of the terms occurring in
the rule. Now, an individual connected to a term via the role r fulfills the term
with the same degree as the corresponding value of the membership function the
term is connected with via the role m. We model this by extending the definition
of the concept Term as follows:

Term v P=(degree, r ◦mf ).

We can calculate the degree of fulfillment of a term expression according to
the semantics suggested by Zadeh in [2, 3], which can be summarized as follows.8

Given two membership functions µA and µB ,

(µA ∧ µB)(a) = min{µA(a), µB(a)}
(µA ∨ µB)(a) = max{µA(a), µB(a)}

(¬µA)(a) = 1− µA(a)

So, we extend the definitions of TermExp∧, TermExp∨ and TermExp¬ as follows.

TermExp∧ v P=(degree,min{conjunct ◦ degree})
TermExp∨ v P=(degree,max{disjunct ◦ degree})
TermExp¬ v P=1−(degree, operand ◦ degree)

8 Certainly, other T-norms and T-conorms could be used.



The predicate P=1−(a, b) is true iff a = 1 − b. min and max are aggregate
functions for the concrete domain R.

To interpret a fuzzy IF-THEN rule, we need an interpretation for the im-
plication. In general, one can have a different interpretation of the implication
for every rule, which is particularly important when the application domain re-
quires the use of weighted rules. Here, we use a universal interpretation π of the
implication in all the rules. However, we do not fix π any further. In most of the
cases, it is equal to minimum. So

Rule v Pπ(degree, antecedent ◦ degree, consequent ◦ degree),

where Pπ is a ternary predicate from the concrete domain R and represents
the interpretation of the implication function π. That is, for given a, b, c ∈ R,
Pπ(a, b, c) is true iff a = π(b, c).

5 Query Answering

So far, we have shown how a fuzzy rule can be interpreted. However, for an-
swering queries that use fuzzy rules, we need an interpretation of fuzzy rules
bases, i.e. of sets of fuzzy rules. Basically, there are two possibilities to interpret
a fuzzy rule base, namely FITA (First Inferencing Then Aggregation) and FATI
(First Aggregation Then Inferencing). In this paper, we will only model FITA
and believe that FATI can be modeled similarly. It has been shown in [7] that
the two principles are equivalent under certain conditions.

5.1 FITA

Consider a rule base containing n rules of the form F1 → G1, . . . Fn → Gn.
In FITA, first each rule is interpreted. That is, for each x, y and each rule i,
the value of π(Fi(x), Gi(y)) is calculated. Now, for a given x, the inference step
is performed for each rule. Again, the inference operator can be different for
different rules. However, we use a universal inference operator for all the rules
and call it κ — in many practical cases, κ is equal to minimum. In general,
the inference operator κ is some function that maps the square [0, 1]2 to [0, 1].
Performing an inference step for a given x and a given rule i means calculating
κ(F (x), π(Fi(x), Gi(y))), where F is some fuzzy set describing the membership
function for a given situation. Having performed the inferencing step for all the
n rules, an aggregation step is performed to obtain a single value from n values.
For this purpose, an aggregation operator α : [0, 1]n → [0, 1] is needed. The
most common aggregation operator is maximum. However, we do not fix α any
further. In the aggregation step,

α(κ(F (x), π(F1(x), G1(y))), . . . κ(F (x), π(Fn(x), Gn(y))))



is calculated. We define a concept FITA as:

FITA v
l

i∈{1,...,n}

∃rulei.Rule u
l

i∈{1,...,n}

∃xi.R[0,1] u ∃output.R[0,1] u

l

i∈{1,...,n}

Pκ(xi, rulei ◦ degree, x ◦mf ) u P=(output, α{xi})

where α is an aggregate function and Pκ is a ternary predicate on the concrete
domain R[0,1]. Pκ(a, b, c) is true iff a = κ(b, c).

5.2 Defuzzification

The goal of a DL query is to determine the value of an instance. FITA delivers
the membership of an arbitrary instance of the target concept to the goal fuzzy
concept according to the compositional rule of inference. That is, if we have a
sufficient number of instances of the target concept, we can calculate for each
instance its membership to the goal fuzzy concept. This way, we obtain a set of
points (x, µT (x)), where x is an arbitrary instance of the target concept and µT

is the target fuzzy concept.
However, the goal of query answering is to determine an instance of the target

concept. This is done by interpreting the set of points (x, µT (x)) as an area in
R2 and defuzzifying this area. One of the most common defuzzification methods
is the so called center of gravity method, where the geometrical center of gravity
of a given area is calculated. The desired instance is then equal to the value of
the x-coordinate of the center of gravity of the area. Hence, the desired instance
ω can be calculated by the following formula:

ω =
∫

x · µ(x)dx∫
µ(x)dx

(3)

To model the defuzzification process, we define a concept DefuzInfo as fol-
lows:

DefuzInfo v ∃fita.FITA u ∃x u ∃prod.R u Pmul(prod, x,fita ◦ output).

Finally, consider a concept C v ∃w.W . For a given instance θ of C, to determine
an instance ω such that w(θ, ω) holds while considering fuzzy rules, we extend
the definition of the concept C as follows:

C v ∃di.DefuzInfo u P=(w, x) u Pdiv(x, sum{di ◦ prod}, sum{di ◦ fita ◦ output}).

We use the already existing instances of the concept W as the arbitrary instances
for determining the area that is defuzzified. If no instances of W are available
in the knowledge base, we can always insert some instances which do not need
to be in any relation with instances of other concepts. The number and value of
such instances depends on the application domain, more precisely on the width
of the range (subset of R) and on the value of dx in equation 3.



6 Related Work

Although combining fuzzy logic with description logics has gained some interest
recently, not much work has been done in this field yet. We mention some of the
work which we consider most important.

[8] presents a fuzzy extension to the description logic ALC. The resulting
so-called fuzzy DL enables reasoning in the presence of imprecise ALC concepts.
From a semantic perspective, fuzzy concepts are interpreted as fuzzy sets i.e.
given a concept C and an individual a, C(a) is interpreted as the truth-value of
the sentence “a is C”. From a syntax perspective, specification of lower and upper
bounds of the truth-value of C(a) is allowed. Further, algorithms for solving the
entailment problem, the subsumption problem as well as the best truth-value
bound problem are presented. The main difference between [8] and our work is
the focus. [8] is a fuzzy logic extension of description logics, while we aim at
the encoding of and dealing with fuzzy rules systems using description logics.
[8] proposes a method of modeling and reasoning about fuzzy knowledge bases,
whereas we construct fuzzy knowledge base on the fly to answer crisp queries
while using fuzzy rules. Similar considerations concern [9–12].

[13] proposes f-SWRL, a fuzzy extension of SWRL. However, the syntax and
semantics of f-SWRL allow to use weights between 0 and 1 for the atoms in a
rule. So, there is actually no fuzziness in f-SWRL rules.

Finally, we believe that our work is different from the existing work dealing
with combination of fuzzy logic with description logics at a very fundamental
level. The existing approaches maintain a fuzzy knowledge base and member-
ship information of fuzzy A-Box assertions must be provided explicitly. In our
approach, we model fuzzy membership functions and calculate the membership
of an individual to membership functions inside the reasoner. Hence, we do not
require extra syntax for supporting fuzzy reasoning.

7 Conclusion and Outlook

In this paper, we have shown how fuzzy membership functions and fuzzy IF-
THEN rules can be modeled with description logics that support the concrete
domain R and simple aggregate functions like min, max, sum etc. Thus, we have
presented a technique that enables easier modeling of complex dependencies by
using fuzzy IF-THEN rules than by using only crisp DL rules. Our modeling
technique allows to calculate a good approximate answer to a query inside a
crisp DL reasoner. Hence, we have integrated and used fuzzy knowledge in a
crisp knowledge base.

In the future, we intend to implement and evaluate our approach in a con-
crete scenario. Our aim is to compute and provide fuzzy membership values as
modeled in section 3.2 at runtime in a lazy fashion instead of precomputing the
corresponding ABox entries a priori. A good candidate application could be an
extension by auctions of the semantic matchmaking portal presented in [14].
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