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Abstract. In this paper we present O-DEVICE, a deductive object-oriented 
knowledge base system for reasoning over OWL documents. O-DEVICE im-
ports OWL documents into the CLIPS production rule system by transforming 
OWL ontologies into an object-oriented schema of the CLIPS Object-Oriented 
Language (COOL) and instances of OWL classes into COOL objects. The pur-
pose of this transformation is to be able to use a deductive object-oriented rule 
language for reasoning about OWL data. The O-DEVICE data model for OWL 
ontologies maps classes to classes, resources to objects, property types to class 
slot (or attribute) definitions and encapsulates resource properties inside re-
source objects, as traditional OO attributes (or slots). In this way, when access-
ing properties of a single resource, few joins are required. O-DEVICE is an ex-
tension of a previous system, called R-DEVICE, which effectively maps RDF 
Schema and data into COOL objects and then reasons over RDF data using a 
deductive object-oriented rule language.  

1 Introduction 

Semantic Web is the next step of evolution for the Web, where information is given 
well-defined meaning, enabling computers and people to work in better cooperation. 
Ontologies can be considered as a primary key towards this goal since they provide a 
controlled vocabulary of concepts, each with an explicitly defined and machine proc-
essable semantics.  

Furthermore, a lot of effort is undertaken to define a rule language for the Semantic 
Web on top of ontologies in order to combine already existing information and de-
duce new knowledge. Currently, RuleML [6] is the main standardization effort for 
rules on the Web to specify queries and inferences in Web ontologies, mappings be-
tween ontologies, and dynamic Web behaviors of workflows, services, and agents. 

One approach to implement a rule system on top of the Semantic Web ontology 
layer is to start from scratch and build inference engines that draw conclusions di-
rectly on the OWL data model. However, such an approach tends to throw away dec-
ades of research and development on efficient and robust rule engines. In this paper 
we follow a different approach: we re-use an existing rule system (CLIPS [8]) for rea-
soning on top of OWL data. However, before an existing rule system is used, careful 
design must be made on how OWL data and semantics are going to be treated in the 
host system. 
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More specifically, we describe O-DEVICE, a system for inferencing over (on top 
of) OWL documents. The system transforms OWL ontologies into an object-oriented 
schema of the OO programming language provided within CLIPS, called COOL [8], 
and OWL data into objects. The O-DEVICE data model maps OWL classes to 
classes, OWL resources to objects, OWL property types to class slot (or attribute) 
definitions and encapsulates OWL resource properties inside objects, as traditional 
OO attributes (or slots). In this way, when accessing properties of a single resource 
few joins are required. The system also features a powerful deductive rule language 
which supports inferencing over the transformed OWL descriptions. Users can either 
use this deductive language to express queries or a RuleML-like syntax.  

O-DEVICE is an extension of a previous system, called R-DEVICE [3], which ef-
fectively maps RDF Schema and data into objects and then reasons over RDF data us-
ing a deductive object-oriented rule language. The rule language is implemented by 
translating deductive rules into CLIPS production rules. Some of its features are sup-
port for incrementally maintained, materialized views, normal and generalized path 
expressions, stratified negation as failure, aggregate, grouping, and sorting, functions. 
Due to space limitations only few features of the OWL mapping scheme are presented 
in this paper. Furthermore, the rule language is not discussed.  

The rest of the paper is organized as follows: Section 2 presents related work on 
rule systems on top of ontologies. Section 3 presents the overall architecture of the 
system, describing shortly the functionality of the basic modules of the system. Sec-
tion 4 describes the mapping procedure of OWL semantics into COOL. Finally, Sec-
tion 5 concludes with a summary and potential future work. 

2 Related Work 

A lot of effort has been made to develop rule engines for reasoning on top of OWL 
ontologies. Bossam [12] is a RETE-based forward chaining rule engine that a) sup-
ports both negation-as-failure and classical negation, b) relieves range-restrictedness 
in the rule heads and c) supports remote binding for cooperative inferencing among 
multiple rule engines. Bossam translates OWL documents into RDF triples as facts. 
Any triples referring to OWL classes and restrictions are translated into unary predi-
cates and triples declaring property values into binary predicates. Finally, RDF collec-
tions are translated into built-in list constructs. 

F-OWL [7] is an ontology inference engine for OWL, which is implemented using 
Flora-2, an object-oriented knowledge base language and application development 
platform that translates a unified language of F-logic, HiLog, and Transaction Logic 
into the XSB deductive engine. Key features of F-OWL include the ability to reason 
with the OWL ontology model, the ability to support knowledge consistency checking 
using axiomatic rules defined in Flora-2, and an open application programming inter-
face (API) for Java application integrations. 

ROWL [9] system enables users to frame rules in RDF/XML syntax using ontol-
ogy in OWL. Using XSLT stylesheets, the rules in RDF/XML are transformed into 
forward-chaining rules in JESS. It makes use of two more stylesheets to transform on-
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tology and instance files into Jess unordered facts that represent triplets. The file with 
facts and rules are then fed to JESS which enables inferencing and rule invocation. 

SweetJess [10] is an implementation of a defeasible reasoning system (situated 
courteous logic programs) based on Jess that integrates well with RuleML. However, 
SweetJess rules can only express reasoning over ontologies expressed in 
DAMLRuleML (a DAML-OIL like syntax of RuleML) and not on arbitrary OWL 
data. Furthermore, SweetJess is restricted to simple terms (variables and atoms). 

SweetProlog [13] is a system for translating rules into Prolog. This is achieved via 
a translation of OWL ontologies and rules expressed in OWLRuleML into a set of 
facts and rules in Prolog. It is implemented in Java and makes use of three languages: 
Prolog as a rule engine, OWL as an ontology and OWLRuleML as a rule language. It 
enables reasoning (through backward chaining) over OWL ontologies by rules via a 
translation of OWL subsets into simple Prolog predicates which a JIProlog engine can 
handle. There are five principle functions that characterize SweetProlog: a) translation 
of OWL and OWLRuleML ontologies into RDF triples, b) translation of OWL asser-
tions into Prolog, c) translation of OWLRuleML rules into CLP, d) transformation of 
CLP rules into Prolog and e) interrogation of the output logic programs. 

DR-Prolog [5] is a system for defeasible reasoning on the Web. The system is 
a) syntactically compatible with RuleML, b) features strict and defeasible rules, pri-
orities and two kinds of negation, c) is based on a translation to logic programming 
with declarative semantics, and d) can reason with rules, RDF, RDF Schema and part 
of OWL ontologies. The system is based on Prolog and supports monotonic and non-
monotonic rules, open and closed world assumption and reasoning with inconsisten-
cies. 

SWRL [11] is a rule language based on a combination of OWL with the 
Unary/Binary Datalog sublanguages of RuleML. SWRL enables Horn-like rules to be 
combined with an OWL knowledge base. Negation is not explicitly supported by the 
SWRL language, but only indirectly through OWL DL (e.g. class complements). Its 
main purpose is to provide a formal meaning of OWL ontologies and extend OWL 
DL. There is a concrete implementation of SWRL, called Hoolet. Hoolet translates 
the ontology to a collection of axioms (based on the OWL semantics) which is then 
given to a first order prover for consistency checking. Hoolet has been extended to 
handle rules through the addition of a parser for an RDF rule syntax and an extension 
of the translator to handle rules, based on the semantics of SWRL rules. 

SWSL [4] is a logic-based language for specifying formal characterizations of Web 
services concepts and descriptions of individual services. It includes two sublan-
guages: SWSL-FOL and SWSL-Rules. The latter is a rule-based sublanguage, which 
can be used both as a specification and an implementation language. It is designed to 
provide support for a variety of tasks that range from service profile specification to 
service discovery, contracting and policy specification. It is a layered language and its 
core consists of the pure Horn subset of SWSL-Rules. 

WRL [1] is a rule-based ontology language for the Semantic Web. It is derived 
from the ontology component of the Web Service Modeling Language WSML. The 
language is located in the Semantic Web stack next to the Description Logic based 
Ontology language OWL. WRL constists of three variants, namely Core, Flight and 
Full. WRL-Core marks the common core between OWL and WRL and is thus the ba-
sic interoperability layer with OWL. WRL-Flight is based on the Datalog subset of 
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F-Logic, with negation-as-failure under the Perfect Model Semantics. WRL-Full is 
based on full Horn with negation-as-failure under the Well-Founded Semantics.  

3 System Architecture 

The architecture of the system (Fig 1) consists of the following five basic modules: 
• Rule Program Loader 
• OWL Triple Loader 
• Deductive Rule Translator 
• OWL Triple Translator 
• OWL Extractor 
 

 

Fig. 1. Architecture of O-DEVICE 

The user inputs (step 1) the URL of the RuleML rule file to the Rule Program 
Loader, which downloads it. The rule file also contains information about the location 
of the OWL files, the names of the derived classes to be exported as results and the 
name of the output OWL file. The Rule Program Loader scans the rule file to target 
the relevant OWL documents to which the rule file refers and passes theirs URLs to 
the OWL Triple Loader (step 2). The RuleML program is translated into the native 
O-DEVICE rule notation using an XSLT stylesheet. The O-DEVICE rule program is 
then forwarded to the Deductive Rule Translator (step 4).  

The OWL Triple Loader accepts a specific URL of an OWL document from the 
Rule Program Loader to download (step 2). Furthermore it uses the ARP Parser [14] 
to translate the OWL document in the N-Triple format. The OWL Triple Translator 
accepts from the OWL Triple Loader the produced triples (step 3) and transforms 
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them into classes, properties and objects of COOL The mapping scheme is described 
in Section 4. 

The Deductive Rule Translator accepts from the Rule Program Loader a set of 
O-DEVICE rules (step 4) and translates them into a set of CLIPS production rules 
(step 5). After the translation of deductive rules or the loading of the compiled rules, 
CLIPS runs the production rules and generates the objects that constitute the result of 
the rule program. The result-objects are exported to the user (step 6) as an OWL 
document through the OWL Extractor. 

4 Mapping OWL Primitives into COOL 

In this section we describe how the OWL data model is mapped onto the COOL ob-
ject-oriented model of the CLIPS language. The class hierarchy of O-DEVICE fol-
lows precisely the class hierarchy of OWL, as it is declared in the OWL Specification 
[15]. The mapping of the RDF Model into COOL is already defined in R-DEVICE 
[3], so we just extended the existing RDF hierarchy. In this section we describe only 
the way O-DEVICE handles OWL primitives.  

4.1 Mapping ontologies and data to objects 

The mapping scheme of OWL ontologies and data to objects tries to exploit as many 
built-in features of the host object-oriented language (namely COOL) as possible. In 
this way, querying of objects and reasoning over OWL data will be faster. The main 
features of the basic O-DEVICE mapping scheme are the following: 
• Built-in OWL classes are represented both as classes and as objects, instances of 

the rdfs:Class class. This binary representation is due to the fact that COOL 
does not support meta-classes, so the role of meta-class is played by the instances 
of rdfs:Class class. User-defined classes follow the same scheme except for the 
fact that the "meta-class" objects are instances of the class owl:Class. Meta-
classes are needed in order to store certain information about a class. So, for exam-
ple, the OWL class Whale (in section 4.2.1) is represented in O-DEVICE both by a 
defclass Whale construct and a [Whale] object that is an instance of the 
owl:Class class. Inheritance issues of class hierarchies are treated by the class-
inheritance mechanism of COOL, for inheriting properties from superclasses to 
subclasses, for including the extensions of subclasses to the extensions of the su-
perclasses and for the transitivity of the rdfs:subClassOf property. 

• All OWL data (resources) are represented as COOL objects, direct or indirect in-
stances of the owl:Thing class. 

• Properties are direct or indirect instances of the class owl:DatatypeProperty or 
owl:ObjectProperty. This also includes subclasses of the above classes, such 
as owl:TransitiveProperty. Furthermore, properties are defined as slots (at-
tributes) of their domain class(es). The values of properties are stored inside re-
source objects as slot values. OWL properties are multislots, i.e. they store lists of 
values, because a resource can have multiple times the same property attached to it. 
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4.2 Handling OWL Semantics 

In OWL specification, there are new classes and properties that enrich the language 
with more semantics than RDF. For a system to be able to reason correctly on OWL 
documents, it should handle these classes and properties appropriately. O-DEVICE 
currently handles ontologies in OWL DL, which supports rich expressiveness and 
gives computational guarantees. In the subsections below, we describe how the sys-
tem handles some of the OWL constructs, giving for each case a short example. 

4.2.1 Property Restrictions 
Class owl:Restriction is a special kind of class description. It describes an 
anonymous class, namely a class of all individuals that satisfy the restriction. OWL 
distinguishes two kinds of property restrictions: value and cardinality constraints. 
Value constraints are declared with the properties owl:allValuesFrom, 
owl:someValuesFrom, owl:hasValue and the cardinality constrains with the 
properties owl:cardinality, owl:minCardinality, owl:maxCardinality. 

Before we explain how O-DEVICE handles these properties, we briefly describe a 
system slot we use to specify the type of a property range. In COOL we define the 
value type of a slot via the INSTANCE-NAME keyword for object properties and the 
INTEGER, SYMBOL, etc, keywords for the datatype properties. However, there is no 
way to specify explicitly the class that an object property is allowed to be. This is very 
critical for our system and we solve this problem by inserting a meta-class variable 
(slot), named class-refs, which holds the class types for all the object properties of 
a class. This system-slot is stored within the "meta-class" object.  

Due to space limitations, below we only present how O-DEVICE handles 
owl:allValuesFrom and owl:minCardinality. 

Restriction owl:allValuesFrom 
A restriction containing an owl:allValuesFrom constraint is used to describe a 
class of all individuals for which all values of the property under consideration are ei-
ther members of the class extension of the class description or are data values within 
the specified data range. Currently the system does not support data ranges. So we 
will give an example about the class extension of the class description.  

Suppose we have the following OWL document with four classes, Mammal, 
Whale, Land and Water and one object property living_place. The domain of liv-
ing_place is Mammal and its range is Land. This property is inherited by Whale; how-
ever, the restriction for Whale is that this property can take values only from Water. 
<owl:Class rdf:ID="Mammal"/> 
<owl:Class rdf:ID="Whale"> 
   <rdfs:subClassOf rdf:resource="#Mammal"/> 
</owl:Class> 
<owl:Class rdf:ID="Land"/> 
<owl:Class rdf:ID="Water/"> 
<owl:ObjectProperty rdf:ID="living_place" > 
   <rdfs:domain rdf:resource="#Mammal" /> 

 <rdfs:range rdf:resource="#Land" /> 
</owl:ObjectProperty>  
<owl:Class rdf:about="Whale" > 
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   <rdfs:subClassOf> 
       <owl:Restriction> 
          <owl:onProperty rdf:resource="#living_place" /> 
          <owl:allValuesFrom rdf:resource="#Water" /> 
       </owl:Restriction> 
   </rdfs:subClassOf> 
</owl:Class> 

The "meta-class" object for Whale is shown below (without unnecessary details). 
[Whale] of owl:Class 
   (class-refs example:living_place example:Water    rdf:type owl:Class 
 ... 
 owl:equivalentClass owl:Class   owl:intersectionOf List) 
   (rdf:type [owl:Class]) 

The multislot class-refs contains value pairs in the form property-range and holds 
the ranges for the values of all the object properties of a certain class. For example, 
the first two values of the slot are example:living_place and example:Water. This 
means that the object property example:living_place of class example:Whale can take 
values only from example:Water. The same slot of class example:Mammal, which is a 
super-class of example:Whale contains the pair example:living_place-example:Land 
taken from the rdfs:domain restriction of the definition of property exam-
ple:living_place. This information is used from the system during its operation either 
to enforce correct data types or to infer types for values of object properties.  

The owl:hasValue constraint is implemented as a default slot value in COOL, 
whereas the owl:someValuesFrom constraint is implemented a combination of a 
minimum cardinality constraint (see below) and a special run-time check upon the 
creation of the resource-object. 

Restriction owl:minCardinality 
This restriction defines a lower bound of the number of possible values of a property. 
COOL directly supports cardinality constraints for multislots. Consider the following 
example: 
<owl:Class rdf:about="#Wine" > 
  <rdfs:subClassOf> 

  <owl:Restriction> 
    <owl:onProperty rdf:resource="#madeFromGrape" /> 
    <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">1 
    </owl:minCardinality> 
  </owl:Restriction> 
</rdfs:subClassOf> 

</owl:Class> 

The definition of Wine is: 
(defclass example:Wine    (is-a gen1) 

(multislot example:madeFromGrape (type STRING) (cardinality 1 
?VARIABLE))) 

The cardinality constraint has the form (cardinality 1 ?VARIABLE) which means 
that the lower bound is 1 and the upper bound unrestricted. The rest of the OWL car-
dinality constraints are implemented similarly. 
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4.2.2 Boolean Combinations of Classes 
In OWL it is possible to create new classes by combining existing classes through 
Boolean operators. For example, the owl:intersectionOf property links a class to 
a list of class descriptions and defines the new class extension to contain precisely 
those individuals that are members of the class extension of all class descriptions in 
the list. We describe the use of this property using the following simple example: 
<owl:Class rdf:ID="Man"> 
  <owl:intersectionOf rdf:parseType="Collection"> 

  <owl:Class rdf:resource="#Human"/> 
  <owl:Class rdf:resource="#Male"/> 
</owl:intersectionOf> 

</owl:Class> 

Class Man is an intersection of classes Human and Male. This is implemented in 
O-DEVICE as a class that is a subclass of the other two: 
(defclass example:Man (is-a example:Human example:Male)) 
(defclass example:Human (is-a owl:Thing)) 
(defclass example:Male (is-a owl:Thing)) 

Objects that belong to class Man also belong to both its superclasses through the 
default class extension mechanism of COOL. Furthermore, when a resource is an in-
stance of both Human and Male classes, the core triple translator of R-DEVICE 
should create a dummy class, which is the intersection of the two classes, and then 
create a new object as an instance of this dummy class. However, if the intersection 
class already exists, then the new object is created as an instance of that class. 

Union of classes is implemented as a common superclass. The complement of a 
class is implemented through the rule language of O-DEVICE by replacing all refer-
ences to the complement of a class A with the keyword ~A, which actually ranges 
over all objects that are not instances of A. In this way, we are able to implement the 
strong negation of OWL into a production rule environment where the closed world 
assumption holds and only negation-as-failure exists. 

4.2.3 Class Equivalence 
The built-in property owl:equivalentClass links a class description to another 
class description stating that both class extensions contain exactly the same set of in-
dividuals. Consider the following example: 
<owl:Class rdf:ID="Picture" /> 
<owl:Class rdf:ID="Figure"> 
   <owl:equivalentClass rdf:resource="#Picture" /> 
</owl:Class>   
<owl:Class rdf:ID="Image" > 
   <owl:equivalentClass rdf:resource="#Picture" /> 
</owl:Class>   

This is treated by creating a system class, with a random generated name, and mak-
ing all the equivalent classes above subclasses of this class. 
(defclass gen1              (is-a owl:Thing)) 
(defclass example:Picture   (is-a gen1)) 
(defclass example:Figure    (is-a gen1)) 
(defclass example:Image     (is-a gen1)) 

These are the corresponding "meta-objects": 
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[example:Picture] of owl:Class 
   (class-refs ... owl:equivalentClass owl:Class ... ) 

 (owl:equivalentClass [example:Image] [example:Figure]) 
 (rdf:type [owl:Class]) 
 (rdfs:subClassOf [gen1]) 

(primary y) 
(equivalent gen1) 

[example:Image] of owl:Class 
   (class-refs ... owl:equivalentClass owl:Class ... ) 

 (owl:equivalentClass [example:Figure] [example:Picture]) 
 (rdf:type [owl:Class]) 
 (rdfs:subClassOf [gen1]) 

(primary n) 
(equivalent gen1) 

[example:Figure] of owl:Class 
   (class-refs ... owl:equivalentClass owl:Class ... ) 

(owl:equivalentClass [example:Image] [example:Picture]) 
(rdf:type [owl:Class]) 
(rdfs:subClassOf [gen1]) 

(primary n) 
(equivalent gen1) 

Notice the two system properties primary and equivalent. The primary slot takes 
values ‘y’ or ‘n’ and is used as follows: one of the equivalent classes is randomly cho-
sen to be a primary one (thus having the value y for the slot primary). This class is 
considered the representative of all the others and is used during the construction of 
the set of equivalent classes. Notice that the slot owl:equivalentClass holds the 
names of the rest of the equivalent classes of the set. In the example, the representa-
tive class of all the equivalent classes is Picture. 

The equivalent property holds the name of the superclass of all the equivalent 
classes. In the example, the superclass of all equivalent classes is gen1. The semantics 
of class equivalence is actually implemented through the rule language of 
O-DEVICE; when a class appears in a rule, the system checks if it has a non-null 
value in the property equivalent. If yes, then the name of the class is replaced by the 
equivalent class. For example, if Picture (or Image or Figure) appears in a rule, then 
it will be substituted by gen1 and thus this rule will cover all the equivalent classes 
since the extension of gen1 covers the same set of objects, namely the union of the ex-
tensions of all the equivalent classes. 

The owl:sameAs construct is handled in a similar way, by creating a primary ob-
ject that represents all the “same” objects, which delegate to the primary object all 
their property values. In this way the primary object is always “retrieved” by the rule 
language, since the rest of the objects to not have any property values. When any of 
these objects is directly queried, it delegates the query to the primary object. In this 
way we overcome the unique-names assumption of OO programming languages. 

4.2.4 Special Properties 
In OWL several special characteristics of properties can be defined such as transitiv-
ity, symmetry, etc. For example, when a property P is transitive and the pairs (x, y) 
and (y, z) are instances of P, then it can be inferred that the pair (x, z) is also an in-
stance of P. Consider the following example: 
<owl:Class rdf:ID="Region" /> 
<owl:TransitiveProperty rdf:ID="subRegionOf"> 
   <rdfs:domain rdf:resource="#Region"/> 

 <rdfs:range  rdf:resource="#Region"/> 
</owl:TransitiveProperty> 
<Region rdf:ID="region1" > 
   <subRegionOf rdf:resource="#region2"/> 
</Region> 
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<Region rdf:ID="region2" > 
   <subRegionOf rdf:resource="#region3"/> 
</Region> 
<Region rdf:ID="region3" /> 

Region1 is a sub-region of region2 and region2 is a sub-region of region3. Because 
subRegionOf is a transitive property, the system must infer that region1 is also a 
sub-region of region3. In O-DEVICE the corresponding objects are: 
[example:region1] of example:Region 

(rdf:type [example:Region]) (example:subRegionOf [example:region2]  
[example:region3]) 

[example:region2] of example:Region 
(rdf:type [example:Region]) (example:subRegionOf [example:region3]) 

[example:region3] of example:Region 
(rdf:type [example:Region]) (example:subRegionOf) 

The value example:region3 has been explicitly stored to the property subRe-
gionOf of the instance region1. In fact, the OWL Triple Translator module calculates 
and materializes the transitive closure of transitive properties when OWL documents 
are loaded. In this way, during the execution of rules there is no need to navigate 
through transitive properties. Almost the same scheme is used to implement symmet-
ric and inverse properties. The OWL Triple Translator module materializes the re-
verse relationships at load time. Functional and inverse functional properties are im-
plemented with the aid of the COOL cardinality constraint. 

5 Conclusions and Future Work 

In this paper we have presented O-DEVICE, a deductive object-oriented knowledge 
base system for reasoning over OWL documents. O-DEVICE imports OWL docu-
ments into the CLIPS production rule system by transforming OWL ontologies into 
an object-oriented schema and instances of OWL classes into objects. In this way, 
when accessing multiple properties of a single resource, few joins are required. The 
system also features a powerful deductive rule language which supports inferencing 
over the transformed OWL descriptions, which however has not been presented in 
this paper, due to space limitations. The mapping scheme of OWL ontologies and data 
to COOL objects is partly based on the underlying COOL object model and partly on 
the compilation scheme of the deductive rule language.  

O-DEVICE is still work in progress; therefore, certain features of the descriptive 
semantics of OWL are still under development. For example, functional properties are 
currently handled only as cardinality restrictions, whereas their role is also to con-
clude that two different names might actually represent the same resource. All these 
interpretations of OWL constructs are currently being implemented by appropriately 
extending the OWL Triple Translator (Fig. 1) with production rules that assert extra 
triples, which are further treated by the translator. Notice that asserting new properties 
to an already imported ontology might call for object and/or class re-definitions, 
which are efficiently handled by the core triple translator of R-DEVICE [3]. There-
fore, the triple translator is non-monotonic, and so is the rule language, since it sup-
ports stratified negation as failure and incrementally maintained materialized views. 
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Planned future work includes: 
• Deploying the reasoning system as a Web Service. 
• Implementing a Semantic Web Service composition system using OWL-S service 

descriptions and user-defined service composition rules. 
• Integrating O-DEVICE with a defeasible logic reasoner [2], an extension of the 

R-DEVICE system, and study how defeasible logic can be used to describe and 
implement web service composition strategies.  
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