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Abstract: Sequences are a natural part of the world to be modelled in
ontologies. Yet the Web Ontology Language, OWL, contains no specific
support for ordering. It does, however, have constructs that can be used to
model many aspects of sequences, albeit imperfectly. This paper demonstrates a
design pattern for modeling order within OWL-DL. This allows us to use
standard DL reasoning to perform pattern matching akin to regular expression
matching and works surprisingly well. The main point of this paper is that
formulating sequences in OWL-DL brings real benefits to users by allowing
them to work at a higher level of abstraction than raw sequences and to deal
with situations in which the details of the sequences are under specified.

1 Introduction

The world to be modelled is full of sequences:

* Time related events — e.g. sequences of sub-processes, biological lifecycles etc.
* Physically linked structures — e.g. protein sequences, carriages in a train, etc.
* Conceptually linked structures — e.g. book chapters, recipes, travel itinerary etc.

However, not only does OWL have no support for ordering, but the natural
constructs from the underlying RDF vocabulary — rdf:List and rdf:nil — are
unavailable in OWL-DL because they are used in its RDF serialization'. Although
rdf:Seq is not illegal, it depends on lexical ordering and has no logical semantics
accessible to a DL classifier. Attempts have been made to implement sequences by
modeling directly in OWL itself — e.g. the OWL-S (OWL-Services) specification
requires order to describe service composition and provides an implementation of
lists> however this is little more than the RDF vocabulary mirrored in OWL without
further semantics.

Despite these limitations, we have strong reasons for wanting to express and reason
with sequential constructs in OWL-DL.

Uhttp://www.w3.org/TR/owl-semantics/mapping.html#rdf_List_mapping
2 http://www.daml.org/services/owl-s/1.2/generic/ObjectList.owl



2 Drummond et al.

* Expressivity — OWL-DL includes constructs such as transitive properties, which
allow more of the semantics of sequences to be represented explicitly than in RDF
or OWL-Lite. OWL also allows modeling at multiple levels of abstraction, such
that sequences can be characterized by their general or more specific properties.

* Reasoning — DL reasoners can be used to check consistency and infer
subsumption — e.g. to confirm that a sequence of amino acids contains only amino
acids and to infer that a sequence is subsumed by another — i.e. that it matches the
pattern represented by that sequence.

The idea of reasoning with sequential structures in OWL-DL using a tableaux
reasoner may surprise some readers but this area has been investigated before. Hirsh
& Kudenko [1] used DLs to model strings as suffix trees and subsumption to solve
substring operations. However, their representation requires extensive rewriting, the
relation of the resulting structures to the original lists is not intuitive and, more
importantly, the resulting structures grow as the square of the length of the list. This is
a serious scaling problem in our domain using lists with hundreds of elements.

We will describe a general list pattern — an intuitive approach related to that
suggested by Hayes® and incorporated in the Semantic Web Best Practice Working
Group’s note on n-ary relations [2]. We review the range of constructs possible using
this approach, describe their benefits and limitations and we will examine them in the
context of a real example from biology, protein sequences, which must be quickly
introduced first.

2 Example Application — A Short Introduction to Proteins

Proteins are made up of sequences of amino acids (actually amino acid residues, but
we’ll keep this simple) and are fundamental to biology.

Biologists also talk more generally about proteins that have various attributes
derived from the patterns of amino acids they contain. This is actually a very
important part of biochemistry — matching specific proteins to common patterns.

Motif (6PFRUCTKNASE motif 1):
[IV]-A-[VI]-F-D-A-T-N-[TS]- T-[RK]-[EDK]-R-R-[HSDARK]

Protein (F26_YEAST Fructose-2,6-biophosphatase):
MGYSTISNDNDIKVCVIMVGLPARGKSFISQKIIRYLSWLSIKAKCFNVGNYRRDVSGNVPMDA
EFFNFENTDNFKLRELAAQNAIKDIVNFFTKEDGSVAVFDATNSTRKRRKWLKDICEKN
NIQPMFLESWSNDHELIINNAKDIGSTSPDYENSEPHVAEADFLERIRQYERFYEPLDPQKDK
DMTFIKLVNIIEEEVVINKIRTYLESRIVFYVMNIRPKPKYIWLSRHGESIYNVEKKIGGDSSLSERG
FQYAKKLEQLVKESAGEINLTVWTSTLKRTQQTANYLPYKKLQWKALDELDAGVCDGMTYEEI
EKEYPEDFKARDNDKYEYRYRGGESYRDVVIRLEPVIMELERQENVLITHQAVLRCIYAYFMN
VPQEESPWMSIPLHTLIKLEPRAYGTKVTKIKANIPAVSTYKEKGTSQVGELSQSSTKLHQLLND
SPLEDKF

Fig. 1. General motif plus matching concrete motif in protein sequence
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Proteins can be thought of as containing “motifs”, short sequences of amino acids
that perform a particular function. Concrete motifs (shown in bold in the Protein
sequence in Fig. 1) are usually specified in terms of specific amino acids which are
extracted by special search engines, e.g. INTERPRO [3]. Biologists often find that
within motifs, alternative amino acids can be found at certain points. These
generalizations are based on evidence of alternative concrete motifs that perform the
same function — biologists then create abstracted motifs that appear more like simple
regular expressions (top of Fig. 1).

The twenty individual kinds of amino acids can be categorized along many
different axes including size, polarity, charge, etc. In OWL, of course, it is possible to
describe amino acids by these features. Taking some examples of substitutions that
biologists make in a particular motif, we can spot that often the alternatives share
common attributes. We can then express our motif in an even more general form. Fig.
2 shows a smaller example [4] with the 3 levels of abstraction; 2 concrete sequences
of three specific amino acids that perform the same function; then a more generalized
motif in a form commonly used by biologists; then a more abstract motif expressible
in OWL using the amino acid features — “first a tiny polar amino acid, followed by
any amino acid, then a large positively charged amino acid”.

Such patterns of amino acids are a key to characterizing protein sequences. One of
our goals is to allow scientists to explore relationships among proteins characterized
by the motifs they contain. To do so, we describe sequences at the class level and then
use the DL reasoner to arrange them into subsumption hierarchies. A second goal is to
allow scientists to work with incomplete information. For example, a scientist might
only know that a sequence consisted of one tiny, polar amino acid, followed by any
amino acid then by a large positively charged amino acid. Viewed in this way, we
describe such sequences as “underspecified”.

[ (Polar and Tiny)-Amino-(Large and Positive) J umnoc':;rspecified
biologist's
[Ser Thr]-x-[Lys Arg] abstraction
(x is "any")
[ (Ser, Gly, Lys) ’ { (Thr, Gly, Arg) J ‘;f(;‘ﬁcfrse‘e
Fig. 2. OWL allows additional levels of underspecification of motif patterns
(ProteinKinaseC Phosphorylation Site)

3 Personal communication, Pat Hayes, 2004
4 Note that we are modeling our lists at the class level, so for the rest of the paper we use the
word OWLList to denote a “class of lists”
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3  Describing Sequences in OWL

We follow a standard software engineering pattern for linked lists (Fig. 3) in which
each item is held in a “cell” (OwLList); each cell has 2 pointers, one to a head
(hasContents) and one to the tail cells (hasNext); the end of the list is indicated by a
terminator (EmptyList) which also serves to represent the empty list. In RDF these
constructs are implemented using the class rdf:List for the cell, the individual
rdf:nil as the terminator, and the two properties rdf : first and rdf:next for the
contents and pointer to the next cell respectively.

type: AminoAcid

hasContents

hasContents hasContents

type: OWLList

>

hasNext hasNext hasNext

Fig. 3. List data structure — simple example

However, as already mentioned, we cannot use the RDF vocabulary in OWL-DL.
Therefore, we must define a separate OWL vocabulary* (shown in concrete abstract
syntax’ in Fig. 4), an example of which is shown diagrammatically in Fig. 3. Whereas
the semantics of the properties rdf:first and rdf:next are implicit in RDF, in
OWL we can express more. We want each cell to have exactly one contents item and
one next cell, and we want to represent the notion of being a member of the list. This
can be done by making hasContents and hasNext functional, and by defining a
transitive property, isFollowedBy, as a super-property of hasNext as shown.
Since this means that hasNext implies isFollowedBy, any sequence of entities
linked by hasNext will be inferred to be a chain linked by isFollowedBy. In other
words the members of any list are the contents of the first element plus the contents of
all of the following elements.

The intention is that cells should be directly linked by the functional property
hasNext. The transitive superproperty, isFollowedBy, is typically used in
definitions and queries, in order, for example, to infer that Serine (followed by
anything) followed by Argenine subsumes the fully specified sequence Serine,
Glysine, Argenine. Alternatively, isFollowedBy can be used to indicate incomplete
information, for example, that we know that one motif follows another, but not the
details of the intervening sequence.

3 http://owl.man.ac.uk/2003/concrete/latest/
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An example of a fully specified list is shown in Fig. 5. In this and subsequent
examples we use the simplified “Manchester Syntax”® used in the Protégé-OWL
plugin’.

Class(OWLList partial
restriction(isFollowedBy allValuesFrom(OWLList)))
Class(EmptyList complete
OWLList
restriction(hasContents maxCardinality(0)))
EquivalentClasses(
EmptyList
intersectionOf (
OWLList
NOT restriction(
isFollowedBy SOME owl:Thing)))

ObjectProperty (hasListProperty
domain (OWLList))

ObjectProperty(hasContents
super (hasListProperty)Functional)

ObjectProperty (hasNext
super (isFollowedBy) Functional)

ObjectProperty(isFollowedBy
super (hasListProperty) Transitive range(OWLList))

Fig. 4. OWL vocabulary for lists as data structures

OWLList AND
hasContents SOME Ser AND
hasNext SOME (
OWLList AND
hasContents SOME Gly AND
hasNext SOME (
OWLList AND
hasContents SOME Lys AND
hasNext SOME EmptyList))

Fig. 5. Example of an OWLList of the form (Ser Gly Lys) in simplified
Manchester syntax

For uniformity we have chosen to create a class of empty lists, which have neither
content nor following members. (The negated existential restriction is used with the
property isFollowedBy rather than the apparently simpler cardinality(0),
because cardinality constraints are not permitted on transitive properties®). Note that,

® http://www.co-ode.org/resources/reference/manchester_syntax/
7 http://protege.stanford.edu/overview/protege-owl.html
8 http://www.w3.org/TR/owl-ref/#fOWLDL
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form meaning examples
1 (A, B, C) Exactly ABC (terminated) abc
(A*) A list consisting only of As aaa, aa (or empty)
3 |(a, B, Cp ) Starting with ABC (non- abc, abex
terminated)
4 (., A, B, C) Ending With ABC (terminated) |abc, xabc
5 ((w, A, B, C, ..) Containing ABC abc, xabc, xabcx,
abcx
6 [(At, B, ..) One or more As followed by B |ab, aaab
7 |([A|B[C], B, C) A or B or C, followed by B then Clabc, bbc, cbc
8 |(hasProp some X, Restriction followed by B then C |Any abc where a
B, C) hasProp x
9 |not(A, B, C, ..) Not starting ABC cbaxx
10 |[((A, B, C, ..), Starting ABC, followed by abcdef, abcxxdefx
(D, E, F, ..)) anything, followed by DEF,
followed by anything
11 (a, B, C, ..) and Starting ABC, and ending AB abcab, abcxxab
(... A, B)
12 10) Empty list (nil)

Fig. 6a. OWLList expressivity and notation summary

from the definitions and equivalence axioms given, we can infer that any list that
provably has no contents can have no following elements and vice versa.

This formulation leaves open the question of whether there is more than one empty
list. If we wish to specify that there is a unique empty list, then we must add a further
axiom to state that EmptyList is equivalent to the nominal that consists of just that
unique individual, i.e.

EquivalentClass (EmptyList, oneOf(emptyList))
However, since not all classifiers handle nominals well, we shall omit this step. It
matters here only that we can infer when a class or individual list, is empty.

1.1  Expressivity

Possible constructs are shown in Fig. 6a along with a simplified syntax and examples.
Sample class definitions illustrating the patterns are given in Fig. 6b. We use sugared
shorthand syntax for lists that should be intuitive given the definitions and examples.

Space does not permit an exhaustive enumeration, but it is clear that constructs
supported are similar in expressivity to that available in regular expressions with two
important advantages:

* The elements are classes, which may be fully defined, e.g. “tiny polar amino acid”
or “large charged amino acid”. A defined class can be considered as an implied
disjunction of its subclasses. This would equivalent to being able to name a
disjunction’ in a regular expression. Most regular expression languages do not

° In regular expression parlance, an “alternation”, usually written [P1 P2 P3] where each Pi is
itself a regular expression.
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support the use of named subexpressions. Even if named subexpressions were
supported, the disjunction would have to be enumerated manually in advance. By
contrast, in OWL, the classifier can infer the subclass hierarchy based on the
properties of the amino acids. Different abstractions over the same amino acids
can be used for different problems.

e It is possible to assert a list in a conjunction, or more generally a boolean
combination, of classes defined using the above patterns — as in pattern 11.
However, care is required, as this can give unexpected results. For example, lists
that start with “ABC” and end with “BCD” are different from lists starting with
“ABC” and followed by “BCD”. That is:

(A, B, C, ...) AND (..., B, C, D) subsumes (A,B,C,D)
whereas (A, B, D, ... ,B, C, D) does not.

form class definition using pattern
1 |(aA, B, C) as per Fig 5
(A*) List _only As - List AND

hasContents ONLY A AND
isFollowedBy ONLY
(List AND hasContents ONLY A)

3 |(A, B, C, ..) List_starts ABC - List AND
hasContents SOME A AND
hasNext SOME (List AND
hasContents SOME B AND
hasNext SOME (List AND
hasContents SOME C))

4 |(.., A, B, C) List _ends ABC - List ABC OR
isFollowedBy SOME List_ABC
(where List ABC follows definition 1)

5 [(., A, B, C, ..) List contains ABC - List starts_ ABC OR
isFollowedBy SOME List starts ABC
6 |(A+, B, ..) List AsFollowedByB - List AND

hasContents SOME A AND

hasNext SOME (
(List AND (hasContents SOME B)) OR
List AsFollowedByB)

7 |([A]|B|C], B, C) as per def 1 but substitute (A OR B OR C) fora
8 |(hasProp some X, B, C) |asperdefl but substitute (hasProp some X) fora
9 |not(A, B, C, ..) List notStarts ABC - List AND

NOT (List starts_ ABC)

10 (((A, B, C, ..), List starts ABC_followedBy DEF -
(D, E, F, ..)) List_starts_ABC AND
isFollowedBy SOME List starts_ DEF
11 ((A, B, C, ..) and List_ starts ABC_ends _AB -
(., A, B) List_starts_ABC AND List ends_AB
12 10) as per Fig 3

Fig. 6b. Example definitions for OWLList Patterns

Compared to RDF lists, OWL allows much tighter control over the constructs used
to describe sequences. However, OWL-DL is not currently sufficiently expressive to
exclude all unintended constructs:

* Most importantly, OWLLists cannot exclude additional branches being defined
using isFollowedBy instead of its functional sub-property hasNext. To do so
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would require being able to define isFollowedBy as the transitive closure of
hasNext rather than merely being implied by hasNext:
ie.

hasNext o hasNext o .. o hasNext €—> isFollowedBy!®
rather than

hasNext o hasNext o .. o hasNext - isFollowedBy
OWL only includes the second, weaker, of these statements directly through
transitivity, because reasoner optimizations currently only exist for the simple
implication [5] and not for the bi-implication.

* OWLLists cannot exclude cycles. To do so would require additional constructs
such as being able to declare the isFollowedBy property to be antisymmetric.
This is ongoing work within the DL community and the issues for optimizing
reasoners have not yet been resolved!'!. In the absence of a full logical check,
checking for cycles must be done separately. Note that (A, B, A) does notimply
a cycle, merely a list beginning with an A and ending with (possibly the same) A.
Both individual lists (al, b, a2) and (al, b, al) satisfy this definition.

* There is no way to define an OWLList of a specific length except by exhaustively
representing the member classes. A more compact form would require the use of
cardinality constraints on isFollowedBy, which is transitive. Cardinality
restrictions on transitive properties are excluded from OWL-DL.

* The notion of “O or more As” or “1 or more As” cannot be expressed on its own
without including the terminating pattern or item, even if this is simply the empty
list. Note also the recursive definition required for this construct in pattern 6.

* Representing an OWList in which one named sublist directly follows another
named sublist without an intervening element can only be done by explicitly re-
representing the concatenation of the two patterns as a single list — pattern 10
cannot enforce this. To make this practical, a macro like mechanism would be
required in the tools.

* We cannot use the reasoner to find the minimal set of classes that are used in a
given list. i.e. there is no way to define a class such that it subsumes just those
classes mentioned in an OWLList, i.e. from the definition L= (A, B, C, A, C)
to define a class M that subsumes precisely the classes A, B, and c. This would
have to be done directly by the tools

Within the limitations noted above, the inferences are, as ever with tableaux
reasoners, sound and complete. However, users must take care to provide complete
definitions including both disjointness and closure axioms. Additional constraints in
the tools are required to aid the user in these cases if they are to be assured of the
expected results.

10 The role inclusion (0) syntax specifies a chain of individuals related along the properties
given, so the above means eg. a hasNext b hasNext ¢ hasNext d < a isFollowedBy d

1 Personal communication, Ulrike Sattler, May 2006.

12 http://www.co-ode.org/ontologies/lists/
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4 Results

Two example ontologies are provided on the web for illustration'?. The motif
example contains a set of dummy definitions for protein sequences in order to cover
all of the constructs described in Fig. 6, such that the expected subsumptions can be
demonstrated. The second, fingerprint example, which models real biological data,
uses pattern 10 to “join” six motifs together in sequence. Each motif contains a
pattern of approximately 20 elements, with a large number of alternative elements at
each position. The fingerprint can then be used to match any sequence that contains
all of the given motifs in the given order. For both these examples, computation is
surprisingly fast, although we would like to investigate further whether some
constructs have a greater effect on the reasoning speed than others. Example 1
includes reasonably complex, although intentionally short, classes of lists and
classifies on a fast laptop, using Protégé-OWL connected to FaCT++'? or Pellet'#, in
approximately 2 seconds. Running the fingerprint example through Pellet took
between 80-170s to correctly classify various test proteins up to 450 elements long —
other reasoners failed to return an answer. Because of the deeply nested nature of the
definitions, the main practical difficulties witnessed were that of stack size within
editing and reasoning software which can be easily resolved with careful
programming.

Although not specifically designed for the biology domain, the mechanisms
described have been used with biologists to capture notions that they would otherwise
find difficult to express. Biologists find the ability to work with under-specified
sequences and to consider abstractions over sequences useful. OWL lists enable
greater abstraction — “large and positive amino acid” - than their existing
representation “Arginine or Lysine” and affords the possibility of using a reasoner to
find those amino acids that could fit the looser specification that were not seen in the
concrete collection of sequences from which the pattern was inferred. This is a
potentially very powerful tool for investigating protein patterns. Additionally,
classifying the patterns themselves, finding that one under-specified pattern subsumes
another has intriguing biological possibilities.

5 Conclusion

In summary, we have described a design pattern for modeling sequences using
OWL-DL.
The most important result of this work is our experience that representing and
reasoning over classes of ordered structures in OWL-DL is useful. Algorithms based
on deterministic finite automata as in standard regular expression matchers would
almost certainly be faster. However, the two main advantages of this over traditional
methods are; firstly, the expressivity of OWL can be used to model various levels of

13 http://owl.man.ac.uk/factplusplus/
14 http://www.mindswap.org/2003/pellet/



10 Drummond et al.

abstraction, which allows for underspecification (because we are often working with
incomplete knowledge) at both the element (cell) level, and at the relative positional
level for the entire structure; secondly, users can capture their knowledge in a single
formalism and use standard DL reasoners to infer subsumption corresponding to
pattern matching over classes of lists and to recognize lists of individuals as belonging
to given classes.

Within OWL, there are certainly many alternative patterns to be investigated, such
as directly linking elements together without intervening structure, and these are
likely to share many of the same advantages as discussed in this paper. We have tried
to demonstrate the usefulness of a general pattern — using protein sequences as an
example application — and believe it can be applied to many different problems. In
doing this we hope to avoid being distracted by the huge array of alternative models
that could be built where the implementation is inextricable from the domain being
modelled.

Critically, by allowing biologists to look at old problems in new ways, the OWL
classification paradigm has allowed them to gain insights on the biology. We have
used real examples from protein sequences in biology as a motivation, but the notions
are general and can be applied to other notions that are intrinsically ordered.
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