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Abstract

This paper describes a method combining symbolic and numerical
techniques for annotating brain Magnetic Resonance images. The goal
is to assist existing automatic labelling methods which are mostly statis-
tical in nature and do not work very well in certain situations such as
the presence of lesions. The system uses existing statistical methods for
generating ABox facts that constitute a set of initial information sufficient
for fruitful reasoning. The reasoning is supported by an OWL ontology
extended with rules, and the facts extracted by the statistical component

1 Introduction

Identifying anatomical structures in brain Magnetic Resonance Images (MRI) is
an important aspect of the preparation of a surgical intervention in neurosurgery,
especially when the lesion is located in the cerebral cortex. A precise labelling of
cortical structures (gyri, sulci) surrounding the lesion is particularly necessary
to determine an optimal surgical strategy. Existing automatic approaches for
annotating brain images are often statistical, e.g., based on Statistical Probabil-
ity Anatomy Maps (SPAMs). A SPAM is a 3D probabilistic map associated to a
particular anatomical structure. The value at each voxel position represents the
probability of belonging to this structure at that location. The statistical data
used in our system were derived from a database of 305 normal subjects, after
re-alignment of MRI data into a common reference system (called stereotaxic
space). SPAMs-like methods have an important drawback. They are not robust
against deformations and shifts caused by a lesion in the brain. A symbolic
method, using a priori knowledge about topological relations between the cere-
bral structures may be an alterative or a complement to compensate it, since in
contrast topological relations are preserved. This paper describes a new hybrid
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method for annotating brain images where SPAMs are used to get a sufficient
set of initial facts for reasoning. Reasoning is supported by an OWL [1] ontol-
ogy about the brain cortex anatomical structures and Horn rules capturing the
topological dependencies between the brain structures.

2 Method

The method consists of two main steps. The first step is the segmentation of
the brain and the extraction of the sulci tracks from an MRI exam. The second
step, is the annotation of a region of interest (ROI) selected from the sulci graph.
This paper mainly focuses on the second step.

Figure 1: The general diagram

Reasoning is performed from an ontology of the brain structures enriched by
rules representing their topological dependencies, and initial facts provided by
numerical and statistical tools (SPAMs). Figure 1 illustrates the complete pro-
cess of the application: (1) acquiring the patient MRI ; (2) brain segmentation;
(3) extraction of the external tracks of the sulci; (4) selection by the user of a
region of interest and extraction of the corresponding subgraph of sulcus seg-
ments delimiting surfaces corresponding to the parts of gyrus (called patches)
present in the region; (5) initialization of the ABox A. The above numerical and
statistical treatments lead to the initial facts, OWL individuals and role values
representing their topological relations, as explained thereafter; (6) reasoning
based on the brain ontology O, the rule base R, and the ABox A (with some
user interaction), (7) inferred labels of the structures involved in the ROI.

2.1 Populating the Abox

First, the numerical tools extract the sulci of a ROI and delimit the surfaces
limited by the sulci (patches). They also provide the topological relations and
the orientations between the different patches and sulcus segments.
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Figure 2: Extraction of the ROI graph

The yellow segments figure 2 (left) show the sulci of the ROI. The patches
(e.g.; P7, P8, P9 etc.) are delimited by the sulci (e.g.; 178, 124 etc.) (right).
The facts extracted by the numerical tools from this graph are represented in
OWL DL (figure 3 left). For example P9 is an individual of the class Patch
while 178 is a SulcusSegment. The property isMAEBoundedBy has a value
(individual of the class AttributedEntity) expressing that P9 is bounded by the
segment 178 with a posterior orientation, and other segments 423, 424 etc.

<Patch rdf:ID="p9">
...
<isMAEBoundedBy>

<AttributedEntity rdf:ID="AttEntity1">
<entity>

</entity>


<SulcusSegment rdf:ID="178"/>

<orientation>
<Unknown rdf:ID="unknown2"/>

</orientation>

<MAEBounds rdf:resource="#p9"/>

</AttributedEntity>

</isMAEBoundedBy>
...

</Patch>

<owl:Class redf:ID="Orientation">
<rdfs:subClassOf>

<owl:Class rdf:ID="Posterior"/>
</rdfs:subClassOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="isMAEBoundedBy">
<inverseOf>

<owl:objectProperty rdf:about="#MAEBounds">
</inverseOf>

</owl:ObjectProperty>

<orientation>
<Posterior rdf:ID="posteriorTo"/>

</orientation>

<orientation>

<Unknown rdf:ID="unknown1"/>
</orientation>



Figure 3: Facts in the ABox (left), OWL class and ObjectProperty (right)

These facts are then completed by data computed from the SPAMs. A SPAM
is a 3D image file associated to a particular anatomical structure, for instance,
a particular gyrus. The information at each point of this 3D image pt(x, y, z)
represents an estimate of the probability to belong to this particular structure.
Each segment si of the ROI is a set of points. We first transform the points
coordinates into coordinates of the reference space, i.e. the stereotaxic space.

3



````````````SulcusSegment

Gyrus
Precentral Postcentral Angular SupTemporal ...

ID = 183 0.384 0.186 0 0 .
ID = 178 0.218 0 0 0 .
ID = 155 0 0.477 0.105 0 .
ID = 298 0 0.038 0 0.076 .

Figure 4: Example of probabilities

Then we calculate the probability pij of the segment si to belong to a SPAM spj

by calculating the average of the probabilities of all its (transformed) points. For
each segment we store the two highest probabilities that have been computed
(figure 4). These values computed from the SPAMs, and the abstractions rules
presented below enable to automatically acquire the initial facts of the Abox A.

Computing the boundaries and separations. Some heuristics have been
defined to determine whether a sulcus ’bounds’ a SPAM or ’separates’ two
SPAMs: if the two highest probabilities are small, over a given threshold MIN ,
then the segment is asserted to separate or to bound the corresponding SPAMs,
else if they are very big, over a given threshold MAX, then the segment is
asserted to be inside the corresponding SPAM. The thresholds MIN and MAX
are defined empirically. More precisely, the rules that abstract the topological
relations regarding the boundaries and separations are:

Figure 5: Computing facts about separation and boundary from SPAMS

• if(pi1 ∈ [MIN, MAX] and pi2 ∈ [MIN, MAX]) then si separates sp1

and sp2. Indeed it means that si is located between sp1 and sp2 that is si

separates them, e.g.; S1 figure 5).
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• if(pi1 ∈ [MIN, MAX] and pi2 < MIN) then si bounds sp1, indeed
low values mean that si is located at the extremity of the SPAM thus it
is a boundary (e.g.; S3 figure 5)

• if(pi1 > MAX and pi2 < MIN) then si isInside an instance sp1,
indeed these values indicate that si is within the SPAM (e.g.; S2 figure 5)

Computing the orientations. Each entity has three orientations: (Right
or Left), (Posterior or Anterior) and (Superior or Inferior). To determinate
the orientations of the segments w.r.t SPAMs, for example that a segment si

bounds a SPAM spj with an anterior orientation, we compare the coordinates
(x, y, z) of the centre of the segment, transformed into the reference space, to
the coordinates (x′, y′, z′) of the SPAM centre.

The heuristic rules below abstract the orientations:

• if x > x′ then si isRightTo spj else si isLeftTo spj

• if y > y′ then si isAnteriorTo spj else si isPosteriorTo spj

• if z > z′ then si isSuperiorTo spj else si isInferiorTo spj

Since such rules could not be used by KAON2, they were applied using a
C ++ procedural program. The resulting role values, e.g.; separates(s0, (prcgr,
anteriorTo, rightTo, superiorTo), (pcgr, posteriorTo, leftTo, inferiorTo))
are represented in OWL (figure 5).

2.2 Brain ontology and rules

The knowledge base consists of the brain ontology enriched with rules. For the
moment, the ontology about the sulci and gyri is represented in OWL DL, the
rules in SWRL. They have been edited using Protégé OWL and the SWRL
plugin [2](figure 6).

• Tbox: the Tbox provides the logical definitions of concepts (classes), roles
(properties) and the asserted axioms. For example, the necessary and suf-
ficient condition to be a segment of the right central sulcus is1 (figure 6):
RightCentralSulcusSegment ≡ ((∃MAEBounds ((∃ entity (∃ partOf Right-
PostCentralGyrus)) u (∃ orientation Anterior))) u ((∃ MAEBounds ((∃
entity (∃ partOf RightPreCentralGyrus)) u (∃ orientation Posterior)))).
This OWL definition expresses that a segment of central sulcus is bounded
by a part of postcentral gyrus with an orientation which is an instance of
Anterior, and is bounded by a part of precentral gyrus with an orientation
which is an instance of Posterior.

• Rule-box: The Rule-box contains all the rules extending the ontology, for
example the rule R1 (figure 6) expresses that a boundary is propagated

1this is not the exact definition but a simplification for the example
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Figure 6: Brain ontology and rules

from parts to whole: isMAEBoundedBy(?x, ?y) ∧ hasSegment(?z, ?y)
∧ SulcalFold(?z) ∧ SulcalFold(?y) ∧ MAE(?x) → isMAEBoundedBy(?x,
?z). If a material anatomical entity x is bounded by a sulcal fold y,
and y is a segment of z, then x is bounded by z. Such rules are needed to
infer the missing knowledge of the classes definitions for instance retrieval.
Rules are also useful to express queries. For example, to find all possible
instances of gyri of which patches pi of a ROI are part: Q(?xi, ..., ?xn) ←
∧i=1 to n(AE(?xi)) ∧ partOf(pi, ?xi).

• Abox: The Abox contains the individuals (instances of classes) and the
instances of relations between them as defined section 2.1.

All the knowledge, the ontology in OWL DL (Tbox), the Horn rules (Rule-
box), and the facts (Abox), are gathered within a single file provided as input
to the reasoner.

3 Reasoning for brain labelling

Figure 7 shows the overall process of reasoning: (1) From the list of sulci (seg-
ments) of the ROI and the list of SPAMs we get a table of probabilities (such
as Figure 4). This table is first created as an XML file. The heuristics pre-
sented above derive the topological relations between the anatomical entities.
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Horn rules
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 in the ROI
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OWL ABox 
and RBox

GYRI
IDENTIFICATION

Gyri SULCI
IDENTIFICATION

Final
annotation

1 2 3

Figure 7: Labelling process

The resulting facts are stored in an OWL file. This file is merged with the
ontology, the rules, and the other facts coming from the numerical tools. (2)
From this file, the inference engine labels the patches as described below. The
user validates the result. (3) Next, the reasoner labels the sulci according to the
ontology definitions enriched by rules. The user validates this step, and finally
the labelled image is obtained. The reasoning is performed as follows :

Labelling the patches. The patches are first labelled using the rules below.
The main rule used is a rule (RM) that makes a matching between the facts
extracted from the images by the numerical tools and the facts computed about
their boundaries and orientations w.r.t the SPAMs:

• MAEBounds(?x, ?c) ∧ AttributedEntity(?c) ∧ entity(?c, ?d) ∧ Patch(?d)
∧ orientation(?c, ?b) ∧ MAEBounds(?x, ?y) ∧ SulcusSegment(?x) ∧ At-
tributedEntity(?y) ∧ entity(?y, ?z) ∧ Gyrus(?z) ∧ orientation(?y, ?b) ∧
Orientation(?b) ) → partOf(?d, ?z)

This rule expresses that if it is known from the extracted facts that a segment
x bounds a given patch d with a given orientation b and it comes out from the
computed orientation that x bounds a SPAM z with the same orientation, then
this patch belongs to the gyrus corresponding to that SPAM. The probability
associated to it is the probability pi calculated as explained section 2.1.
In fact, the above rule is simplified and the real rule used involves a sameAs
construct. Indeed, as the Abox A is issued from two generated files that are
merged into a single OWL file, a same individual has got different ID depending
on the file it comes from:

• MAEBounds(?x, ?y) ∧ SulcusSegment(?x) ∧ AttributedEntity(?y) ∧ en-
tity(?y, ?z) ∧ Gyrus(?z) ∧ orientation(?y, ?b) ∧ MAEBounds(?x, ?c) ∧
AttributedEntity(?c) ∧ entity(?c, ?d) ∧ Patch(?d) ∧ orientation(?c, ?b’)
∧ Orientation(?b) ∧ Orientation(?b’) ∧ sameAs(?b, ?b’)→ partOf(?d, ?z)

As there is a possible incertitude in the computed orientations mainly due to
the approximations caused by the SPAMs, it may occur that a segment bounds
two SPAMs with the same orientation, hence a patch d is inferred to belong to
several gyri zi with probabilities pi. To decide to which gyrus d finally belongs,

7



we calculate
∑

(pi) for each gyrus and keep the gyrus with the highest result.

The second rule (RS) below infers boundaries from a separation: if a given
sulcus separates two gyri then it bounds each of them. This rule is used to infer
boundaries from the known separations, information which is needed to fire the
first rule above.

• separates(?x, ?y) ∧ SulcusSegment(?x) ∧ MAEPair(?y) ∧ firstEntity(?y,
?z) ∧ secondEntity(?y, ?a) ∧ AttributedEntity(?z) ∧ AttributedEntity(?a)
→ MAEBounds(?x, ?z)

Labelling the sulci. After the patches, the sulci are next labelled thanks to
the ontology definitions and the rules. If a given segment si satisfies a definition
of a given sulcus suj in the ontology, i.e. if it meets the necessary and sufficient
condition of suj , then si is classified as an instance of suj .

Simplified example.

• Let be a segment s0 and two patches p1, p2 of the ROI.

• the facts provided by the numerical tools include the individuals p1 and p2

and the relation separates(s0, (p1, anteriorTo, rightTo, superiorTo), (p2,
posteriorTo, leftTo, inferiorTo)) where anteriorTo, rightTo, superior-
To, posteriorTo, leftTo, and inferiorTo are respective individuals of the
classes Anterior, Right, Superior, Posterior, Left, and Inferior.

• the facts computed from the SPAMs include the relation separates(s0,
(prcgr, anteriorTo, rightTo, superiorTo), (pcgr, posteriorTo, leftTo,
inferiorTo)) where RightPreCentralGyrus: prcgr and RightPostCentral-
Gyrus: pcgr.

The labels of the patches are obtained by answering the query Q(?xi, ...,
?xn) ← ∧i=1 to n(AE(?xi)) ∧ partOf(pi, ?xi). Applying the rule RS , facts
about boundaries are derived from the initial facts about separations, then as
the body of the matching rule RM can be satisfied by bindings its variable to
known individuals, the reasoner infers: partOf(p1, prcgr) and partOf(p2, pcgr).
Next, at a second step, the labels of the segments are obtained from the class
definitions if the ontology. As s0 satisfies the N&S condition of RightCentral-
SulcusSegment, the reasoner infers that s0 is an instance of the RightCentral-
SulcusSegment.

4 Results and discussion

This section presents some results obtained for real data with the method pre-
sented above. The experiments are achieved with the reasoner KAON2 [3],
which accepts ontologies extended with rules [4]. The region of interest is the
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Figure 8: Results obtained with KAON2

automatically extracted region displayed figure 2. We used 45 SPAMs corre-
sponding to the most important gyri of the brain. The MIN value approxi-
mated from the computations is 0.05 and the MAX value 0.75.

Labels of patches. The SPARQL query2 SELECT ?x ?y WHERE ?x
rdf:type a:Patch ; a:partOf ?y asks for each patch all the possible entities it is
part of. The answers of KAON2 to that query provide the labels of the patches,
for example patch P6 is a part of the right superior temporal gyrus (figure 8).

Labels of sulcus segments. The query SELECT ?x WHERE ?x rdf:type
a:central sulcus right asks for the right central sulcus segments. KAON2 returns
the segment 183, which is the single segment of the right central sulcus for this
ROI.

For the two experiments reported in this paper, more than 80% of the results
given by the reasoner are correct regarding the labels of the patches and over
70% for the labels of the sulcus segments (according to our expertise). For ex-
ample the patch P8 is inferred to be a part of the right precentral gyrus, P1
is inferred to be a part of the right postcentral gyrus, and the segment 183 is
inferred to be an instance of the right central sulcus segment, which is correct
since it separates parts of the right precentral gyrus from parts of the right
postcentral gyrus. This is an ongoing work. It will be interesting in the future

2The query language of KAON2
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to assess how this percentage is affected by various aspects of the ontology and
rules, and the respective effect of the SPAMs and of the reasoning on the results.
The proposed method was adapted to comply with some language and tools lim-
itations, in particular with the version of the KAON2 reasoner available online
and the Protégé SWRL editor, for example:

• For the moment the ontology was simplified using OWL DL instead of
OWL1.1 [5]. We used existential restriction instead of qualified cardinal-
ity restrictions (QCR). But, it should be noted that the real Tbox requires
both QCR, disjunctions, inverse. For example, the ontology should express
that each right PostCentralGyrus is bounded exactly by one right Central-
Sulcus. Besides, the rules cannot be expressed as role inclusion axioms (cf.
rule (RM) or the rules of the online Annex at http://idm.univ-rennes1.fr/˜
obierlai/). Thus the required knowledge is not expressible in the EL++

fragment of OWL1.1.

• we defined subclasses of Orientation, e.g.; Posterior, Anterior etc. with
individual e.g., posteriorTo and used existential restrictions instead of enu-
meration or hasValue restrictions, because KAON2 does not support nom-
inals.

• KAON2 reasoner is based on the DL-safe rules assumption [4]. Although
the rules used for our system are not DL-safe, KAON2 provides the ex-
pected answers for the reported experiments. Indeed, in these cases the
rules were fired, because given the initial facts asserted, their body was
satisfied by bindings their variable to known individuals. However, this
approach is not always relevant and situations may occur where solutions
are missed because of the existential construct. For example, a patch is
defined with an existential in the equivalent class expression (rhs). Hence,
it may happen in some cases that a rule expressing the propagation of a
property from parts to whole cannot be not fired, because an instance of
Patch is defined without being connected to a known instance of gyrus
by the relation partOf [6]. KAON2 does not draw all the consequences
according to the first order semantics of SWRL, but only consequences
under the ”the DL-safe semantics”.

• all n-ary relations were transformed into binary relations, using reifica-
tion for example we defined an artificial class AttributedEntity for it.
The ontology was edited using Protégé rules editor which allows to edit
only SWRL rules and does not support ordinary predicate that are not
DL predicates. KAON2 extends the standard SWRL syntax and offers
a swrl:PredicateAtom that allows ordinary predicates, but according to
the authors their SWRL extensions were still experimental at the time of
these experiments. It would be preferred to have a language extension
and tools allowing n-ary relations. N-ary relations is a general needs for
example also encountered with the Foundational Model of Anatomy ontol-
ogy which exhibits more than 30 attributed relationships and where more
than 2300 nested classes were generated for their values [7].
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• The heuristic rules section 2.1 were implemented in C + +. A declara-
tive approach was not possible with KAON2 since at the moment it does
not handle OWL DL datatypes or OWL1.1 user-defined datatypes and
restrictions involving datatype predicates.

5 Conclusion

This paper reports the current stage of development of an hybrid system com-
bining numerical and symbolic techniques for brain MRI images description, and
its present limitations. The method is based on an OWL DL ontology extended
with rules, and facts coming from numerical tools and SPAMs. Future work will
investigate how to overcome some of the work-arounds employed to circumvent
the limitations encountered with the representation and tools used. At the mo-
ment the method was only tested over a limited set of brain images that did
not exhibit a lesion. The experiments will be extended to more cases and to
brain images exhibiting a lesion in order to assess its robustness.Automatizing
the annotation of the semantic content of digital images presents promising
perspectives for new applications such as retrieval of similar cases for decision
support, or statistical medical studies in large populations.
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