A Typed Hybrid Description Logic Programming
Language with Polymorphic Order-Sorted DL-Typed
Unification for Semantic Web Type Systems

Adrian Paschke

Internet-based Information Systems, Dept. of Informatics, TU Munich, Germany
adrian.paschke@gmx.de

Abstract. In this paper we elaborate on a specific application in the context of
hybrid description logic programs (hybrid DLPs), namely description logic Se-
mantic Web type systems (DL-types) which are used for term typing of LP rules
based on a polymorphic, order-sorted, hybrid DL-typed unification as procedural
semantics for hybrid DLPs.

Key words: Homogenous and Heterogeneous Description Logic Programs, Poly-
morphic Order-Sorted Typed Unification, Rule Interchange

1 On the Need for hybrid DL-typed Unification

The works on combining rules and ontologies can be basically classified into two basic
approaches: homogeneous and heterogeneous integrations. Both have pros and cons and
the question wether the Semantic Web should adopt a homogeneous or heterogenous
view is still very much at the beginning. Starting from the early Krypthon language
[1] among the heterogeneous approaches, which hybridly use DL reasoning techniques
and tools in combination with rule languages and rule/LP engines are e.g. CARIN [2],
Life [3], Al-log [4], non-monotonic dl-programs [5], r-hybrid KBs [6], hybrid DL-typed
LPs [14] and Datalog”% [15]. Among the homogeneous approaches which combine the
rule component and the DL component in one homogeneous framework sharing the
combined language symbols are e.g. DLP [7], KAON2 [10] or SWRL [9]. Different inte-
gration strategies such as reductions, SLD resolution extensions or fixpoint iterations
are applied with different restrictions to ensure decidability such as DL-safe rules [10],
where DL variables must also occur in a non DL-atom in the rule body. Furthermore,
they can be distinguished according to their information flow which might be uni-
directional or bi-directional. In this paper we focus on the hybrid approach and elab-
orate on a polymorphic order-sorted DL-typed unification as procedural semantics for
hybrid DL-typed logic programs, which allows term typing using external Semantic Web
(RDFS / OWL) ontologies as order-sorted type systems, where the terminological con-
cepts (classes) of the T-Box model are the defined types (a.k.a. sorts). On a pragmatic
level typing in logic programming leads to rule languages with higher expressiveness
which provide typical software engineering principles such as modularization and data
abstraction. Types can be considered as an approximation of the intended interpreta-
tion which reflects the intention of the rule programmer, i.e. as an instrumentation of a
logic program. They can be used to integrate domain specific vocabularies, which model
the domain semantics or even pragmatic meaning, into domain-independent rules. As a
result, such typed rules are much easier to interchange between domain-boundaries in
distributed environment such as the (Semantic) Web. From a descriptive perspective



2 Adrian Paschke

they attach additional information, which can be used as ”type guards” for selecting
specific goals, i.e. they constrain the level of generality in queries and lead to much
smaller search spaces and therefore improve the execution efficiency of query answering.

The theory of types in logic programming has been extensively studied and different
approaches reaching from simple descriptive type systems to prescriptive many-sorted,
order-sorted or polymorphic typed (second-order) languages have been proposed - see
e.g. [11] for an overview. However, to the best of our knowledge there are nearly no
approaches which build upon these results and implement practically running imple-
mentations in terms of (hybrid) DLP rule engines which use Semantic Web ontologies
as type systems for DL-typed rules. The only works we are aware of are AL-Log [4]
and closely related Datalog-DL [15], which use the DL terminological models to de-
fine hybrid procedural type functions in constraint clauses and OO-RuleML [16] resp.
OO-jDrew [17], which use RDFS to define external order-sorted type systems. These
systems adopt a ”constraint typing approach” where types are included in the body
of a rule as extra DL functions which act as constraints which restrict the values of
variables and constants to range over the instances of the externally specified DL con-
cepts. Although this solution to some extend ensures expressiveness in the sense that it
allows to reuse the binary relations (properties) defined in the external ontology, it has
serious drawbacks in the context of term typing, since this approach leaves the usual
procedural semantics of resolution and unification unchanged. Hence, the constraints,
i.e. the additional DL functions, apply only in the body part of a rule according to the
selection function of the LP inference algorithm and e.g., fresh typed constant terms,
i.e. new DL instances, can not be introduced directly into rule heads. The type con-
straints do not apply during the unification between (sub)goals and rule heads, which
might lead to large and needless search spaces and are dependent on the order of the
body literals. In contrast to these works we choose a prescriptive heterogenous typing
approach, where types are direct properties of the logical formulas and dynamic type
checking is done by typed unification which internally calls an Semantic Web API with
an external DL reasoner (the Jena API (http://jena.sourceforge.net) in combination
with the DL reasoner Pellet (http://www.mindswap.org/2003/pellet/). That is with
our hybrid DL-typed logic we present a different and in the context of the Semantic
Web new approach.

2 Polymorphic Order-Sorted DL-Typed Unification

We define a ”has-type” relation of the form ¢ : » denoting that term ¢ has type r. Note,
that this may not eliminate programs that have a denotation in the untyped frame-
work, because constants and variables are allowed to be untyped denoted by t : T or
simply ¢t. An untyped term ¢ is implicitly assumed to be of type Resource which is the
common super class from which all other DL classes inherit and hence unifies with all
other typed terms. In particular, we define the type of complex functions and lists to be
untyped by default. The external type alphabet T is a finite set of monomorphic type
symbols ¢ built over the distinct set of terminological concepts C' in the DL language
L, i.e. the set of classes in the T-Box model of the external DL ontology. We assume
that the type alphabet is fixed, but arbitrary, i.e. no new terminological concepts can
be introduced in the T-Box. This ensure that we can also apply static type checking
on the used types at compile time during parsing the DL-typed LP script. The small-
est set of constants is built over the set of individual names in L, but we do not fix
the constant names and allow arbitrary (under UNA) fresh constants (individuals) to



DL-Typed Unification for Hybrid DLPs 3

be introduced within facts and rule heads. However, only uni-directional information
flows from the DL part to the rules are supported, which is desirable, because new
individuals introduce in rule heads should not apply globally as the individuals defined
in the DL A-box model do, but should be used locally to prove a particular typed goal.
Definition: A hybrid DL-typed rule r: H «+ By A .. A B,, where H and B; are literals (positive or
negative atoms with default and explicit negation) with n-ary sequences of typed t : r or untyped ¢
constants, variables or finite complex terms/functions. A hybrid DL-typed fact f is a either a ground
rule with an empty body H <, where the head H is a literal with a n-ary sequence of typed or
untyped constants or ground complex terms or it is a non-ground rule with an empty body where
the head literal contains variables which are interpreted as queries on the DL knowledge base. A
hybrid DL-type KB K is a tuple < KEP KPL > where KPL is a DL knowledge base (T-Box and
optional A-Box) defined in L and KLP is an LP IT with hybrid DL-typed rules and facts.
Variables in non-ground facts are interpreted as queries on the DL knowledge base
KPZL_ For instance, a variable of type C' which is bound by unification with a subgoal
to the individual a is interpreted as an instantiation query on KP* for the individual
a to be of class C. A free variable X of type C in a fact is interpreted as a universally
quantified query deriving all known individuals in the A-Box which are an instance
of C failing if no individual of the respective type can be found. We exclude implied
unknown individuals in K7 and ensure that each variable is bound to individuals
which are explicitly defined either in the A-Box or directly in K BEF. We restrict type
checking to finding the lower bound of two types (r1,r2) under the partial order < of
the DL taxonomy model with an upper bound T, i.e. : Resource = untyped, and a
lower bound 1 = empty and replace the type of a term with the more specific type
concept. We define a lower operation by:

lower(ry,r2) = (r2/r1) — r1, if r1 < rg resp. lower(ri,r2) = (ri/r2) — r2, if 11 > ro

lower(r1, T) = (T /r1) — r1 resp. lower(T,r2) = (T /r2) — ro, where T = untyped

lower(ry, r2) = L, otherwise, where 1 = empty type.

Note that, the operation lower requires at most two queries to the external DL rea-
soner to compute the lower bound of two types having a lower bound at all. If the
type system consists of more than one DL ontology, the ontologies might be merged
into a combined ontology with the common super class Resource and possible cross
links between the component ontologies defined by e.g. owl : equivalentClass or
owl : disjointWith. Note that, this may introduce conflicts between terminological
definitions, which are out of the scope of this paper. To enable polymorphic typing
of variables during unification, i.e. a variable may change its type dynamically, we in-
troduce a set P = {t1 : 71,..,tn : o} of type restrictions, denoting that the term ¢;
(currently) has type r;, as a prefix to the set of equations E: P&FE. The type rules of

the typed unification are:
PEB&S (b1, tn)=f (ty, st

P&E&Y =Y n)
(E) 7 ,
P&B&t =t] & . &tn=t),

Ber—> where Y is a variable (D)

(B) R&Yir&B&Y =t
P/&o(E)&Y =t
but not in ¢, and where o = {Y/t}. P&t : r reduces to P’ using the auxiliary type rules ET and BT
(O) P&E&t=Y
PLE&Y =t’

The auxiliary rules for polymorphic unification of types are:

(ET) M, if f:r1..7, — 72 and 72 < r and (ET) M

P&Yiri&Z:irg
(BT) P&Y dower(ry,rz)

, where Y is a variable, t is a variable or non-variable term, and Y occurs in E

where Y is a variable and t is not a variable

DL-typed unification fails (1) if there is an equation f(t1,..,t,) = g(t/17 ..,tin) in E with f # g or
(2) if there is an equation Y = ¢ in E such that Y =t and Y € t or (3) if there is an equation ¥ = ¢
in E such that Y : r1 and t : 7o, where t is a constant term and r2 > r1 or (4) if there is an equation

Y = Z in E such that Y : r; and Z : ro and lower(ri,r2) =L, where Y and Z are variable terms.



4 Adrian Paschke

Otherwise, if E = {Y;l]i € {1,..,n}} then 0 = {Y1/t1,..,Yn/tn} is the mgu of the unification prob-
lem given by the original set of equations E. (B) involves polymorphic unification of order-sorted
types with a subtype resp. equivalence test 7o < r; and a computation of the lower bound of two
types lower(ry,r2) in the auxiliary rules, possibly assigning the more specific type (i.e. the lower
type) to a variable. According to the hybrid approach the DL inference task incl. possible ontology
mapping (equivalent classes) is solved by an external DL reasoner which is queried within the unifi-
cation algorithm. The polymorphic variables may change their type during unification according to
the rule (BT) and the lower operation. (ET’) is introduced to reduce unification to special cases of
the binding rule (B) in the untyped case without type checking, i.e. to efficiently process untyped
variables. In the order-sorted case where all terms are of type ”Resource” resp. untyped, unification
is performed as in the ordinary untyped case. Informally the polymorphic order-sorted unification
rules state:

Untyped Unification: Ordinary untyped unification without type checking

Untyped-Typed Unification:The untyped query variable assumes the type of the typed target

Variable-Variable Unification: (1) If the query variable is of the same type as the target variable or

belongs to a subtype of the target variable, the query variable retains its type (according to lower),
i.e. the target variable is replaced by the query variable. (2) If the query variable belongs to a super-
type of the target variable, the query variable assumes the type of the target variable (according
to lower), i.e. the query variable is replaced by the target variable. (3) If the query and the target
variable are not assignable (lower = L) the unification fails

Variable-Constant Term Unification: (1) If a variable is unified with a constant of its super-type, the

unification fails. (2) If the type of the constant is the same or a sub-type of the variable, it succeeds
and the variable becomes instantiated.

Constant-Constant Term Unification: Both constants are equal and the type of the query constant

is equal to the type of the target constant.
Complex terms such as lists are untyped by default and hence are only allowed to be unified with

untyped variables resp. variables of type ”Resource”.

3 Discussion

The main motivation for introducing Semantic Web based types into declarative logic
programs comes from Software Engineering, where principles such as data abstraction,
modularization or consistency checks are vital for the development and maintenance
of large rule-based systems and from distributed system engineering and collabora-
tion, where domain-independent rules need to be interchanged and given a domain-
dependent meaning in their target environments. In this paper we have contributed
with a hybrid polymorphic order-sorted DL-typed unification algorithm as a procedural
semantics for hybrid DL-typed LPs where external Semantic Web ontologies which are
serialized in RDFS or OWL are used as external type systems. In contrast to other DL
typing/integration approaches we follow a prescriptive typing approach and incorporate
terminological type information directly into the names of symbols in the rule language.
The approach permits overloading and ad-hoc polymorphism for typed and un-typed
terms, where variables might change their types. The hybrid DL-typed unification al-
gorithm is generally applicable to different logic classes such as normal or extended LPs
with finite functions or Datalog LPs which assures decidability. The general untyped
unification problem in logic programming is P-complete under logspace reductions and
P-hardness was proven e.g. by [12]. We, have optimized the basic untyped unification
algorithm to almost linear time [18]. We allow the DL languages which are used to
describe the order-sorted type hierarchies to range over decidable DLs reaching from



DL-Typed Unification for Hybrid DLPs 5

ALC which corresponds to the fragment of FOL obtained by restricting the syntax to
formulas containing only two variables (closely related to the multi-modal language K
[13]) up to SHIQ (i.e. ALCr+) extended with property hierarchies (H), inverse roles
(I) and qualified number restriction (Q)), which is in EXPTIME and SHOIN(D) with
nominals and unqualified number restrictions, which has NEXPTIME complexity. As
a result the hybrid DL-typed unification of our DL-typed unification algorithm is in
EXPTIME for OWL Lite type systems resp. NEXPTIME for OWL-DL type systems.
Although this are rather high worst-case complexity bounds, the used external DL
reasoner ”Pellet” implements a highly optimized tableaux algorithm which behaves
adequately in practice. In fact, this is an another strong argument for our hybrid
approach. It should be noted that our DL-typed LP language also supports RDFS
vocabularies to describe order-sorted type systems, which due to the reduced expres-
siveness, e.g. lack of equivalence entailment, are computationally much more efficient.
From a semantics point-of-view of a polymorphic order-sorted type system, due to the
fact that RDFS is not just a smaller subset of the OWL Lite or OWL DL languages,
another advantage of RDF'S is the usage of its recursive meta-model, in particular the
non-limited type relations.

References

1. R.J. Brachman, P.V. Gilbert, H.J. Levesque. An essential hybrid reasoning system: Knowledge
and symbol level accounts for krypton. in Int. Conf. on Artificial Inelligence. 1985.

2. A.Y. Levy and M.-C. Rousset. CARIN: A Representation Language Combining Horn Rules and
Description Logics (1996) European Conference on Artificial Intelligence

3. H. Ait-Kaci and A. Podelski. Towards the meaning of LIFE. in Int. Sym-posium on Programming
Language Implementation and Logic Pro-gramming. 1991: Springer.

4. F. M. Donini, M. Lenzerini, D. Nardi,A. Schaerf. AL-log: integrating Datalog and description
logics, J. of Intelligent and Cooperative Information Systems, 10/1998, pages 227-252.

5. T. Eiter, T. Lukasiewicz, R. Schindlauer, H. Tompits. Combining Answer Set Programming with
Description Logics for the Semantic Web. KR 2004, pages 141-151.

6. R. Riccardo. On the decidability and complexity of integrating ontologies and rules. Journal of
Web Semantics, 3(1), 2005.

7. B. Grosof, I. Horrocks, R. Volz, S. Decker. Description Logic Programs: Combining Logic Pro-
grams with Description Logics. In Proc. of WWW 2003, Budapest, Hungary, May 2003, pp.
48-57. ACM, 2003.

8. B. Motik, U. Sattler, R. Studer. Query Answering for OWL-DL with Rules. Journal of Web
Semantics, 3(1), 2005.

9. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof , M. Dean. SWRL: A Semantic
Web Rule Language Combining OWL and RuleML. W3C Member Submission. 21-May-2004.
URL:http://www.w3.org/Submission/SWRL/.

10. B. Motik, U. Sattler, R. Studer. Query Answering for OWL-DL with Rules. Journal of Web
Semantics, 3(1), 2005.

11. F. Pfenning, editor. Types in Logic Programming. MIT Press, 1992.

12. C. Dwork, P.C., Kanellakis, J.C. Mitchell. On the sequential nature of unification. J. Log.
Program. 1, 1 (Sep. 1984), pages 35-50.

13. J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal logics of knowl-
edge and belief. Artificial Intelligence, 54:319-379, 1992.

14. A. Paschke: Typed Hybrid Description Logic Programs with Order-Sorted Semantic Web Type
Systems based on OWL and RDFS, IBIS, TUM, Technical Report 12/05, 2005.

15. J. Mei, H. Boley, J. Li, V.C. Bhavsar, Z. Lin. Datalog-DL: Datalog Rules Parameterized by
Description Logics, Proc. of CSWWS’06, Semantic Web and Beyond, pp. 171-188, 2006.

16. H. Boley. Object-Oriented RuleML: User-Level Roles, URI-Grounded Clauses, and Order-Sorted
Terms, RuleML 03, pp. 1-16.

17. M. Ball, H. Boley, D. Hirtle, J. Mei, B. Spencer. The OO jDrew Reference Implementation of
RuleML, Proc. RuleML’05, pp. 218-223.

18. A., The ContractLog Inference Engine: A configurable inference service for logic programming
with linear resolution, goal memoization, loop prevention, and hybrid Semantic Web typed
unification supporting selectable SLDNF related and well-founded semantics. 05/05, IBIS, TUM,
Technical Report: Munich.



