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Abstract. The research community has noted the need to retrieve the instance
level of an ontology from bulk data stored in external data sources (e.g., a re-
lational database), in order to delegate to the external source all aspects of the
actual management of the data. To achieve this, several methodologies have been
recently developed to represent and reason about what we call here Ontologies
with Linking Axioms. However, existing DL reasoners cannot properly deal with
such ontologies. Indeed, including the instance level in the communication with
a DL reasoner can cause a heavy communication overhead, and goes against the
requirement of delegating data management to the external source. To overcome
these problems, we present here an extension to the DIG 2.0 Interface that al-
lows for the specification and management of Ontologies with Linking Axioms.
The extension is a general framework which can accommodate any type of data
source and linking axiom through specific implementations. We also present an
implementation aiming at representing axioms linking data sources managed by
an RDBMS to an ontology.

1 Introduction

In several areas such as Data Integration [1], the Semantic Web [2], and Ontology-
Based Data Access [3], the intensional level of an application domain is represented
by an ontology that provides a conceptual view of the data maintained by the system,
and through which clients access the system services. In a setting where the amounts of
data involved are large, such as the ones mentioned above, it may be more convenient,
or even necessary due to architectural constraints, to have the data itself managed by one
or more external systems (e.g., a Database Management System), and link the ontology
to such systems by means of suitable mappings [3, 4].

Indeed, this way of proceeding offers several advantages with respect to the one
where both the intensional (i.e., the TBox) and the extensional (i.e., the ABox) levels
of an ontology are under the direct control of the ontology management system (OMS)
and the associated reasoner': (i) when data management can be fully delegated to the
external system, then one can rely on such a system to improve both efficiency in pro-
cessing queries and scalability with the data; (ii) physical independence, since changing

! Note that current Description Logic reasoners might be considered as the simplest form of
OMSs with associated reasoner.



the structure and organization of the underlying data does not require to change the on-
tology itself, but only the mappings between the ontology and the data; (iii) flexibility
and robustness, since temporary unavailability of a source does not invalidate the whole
query answering process; moreover, querying can be immediately resumed as soon as
the data source becomes available again.

We observe that whether it is possible to exploit the above advantages and delegate
query processing to an external system, while preserving soundness and completeness
of the overall query answering process, strongly depends on the expressiveness of the
language used to express the ontology [5].

Moreover, if the issue of client-system communication efficiency is considered, ask-
ing the clients to retrieve and transfer data from existing data repositories to the OMS
might create a large communication overhead in which the client is involved. One pos-
sibility to avoid this is to delegate data retrieval to the OMS by telling it how and from
where to retrieve the data.

The communication mechanism which is shaping the way in which users and exter-
nal systems interact with OMSs, the DIG Interface [6], currently does not foresee these
kinds of tasks even though there are systems already implementing these ideas (e.g.,
KAON?22, QuOnto?).

In this article, we provide the definition of a standard for this kind of client-system
interaction for OMSs, in terms of an extension to the DIG 2.0 interface. The extension
allows for the specification of linking axioms, where each such axiom generically con-
nects elements of an ontology to elements of an external data source. Following [4],
the elements to connect are specified in the linking axioms by means of two queries,
over the data source and over the ontology, respectively. The extension does not take
any commitments with respect to the actual language(s) used in a linking axiom. The
linking axioms definitions are kept abstract, and are instantiated with specific types of
queries when needed. As an example and proposal, we also provide an instantiation of
the extension that allows to map a generic DL ontology to a relational database.

The rest of the paper is structured as follows. In Section 2 we present the DIG
Interface, in Section 3 we briefly discuss linking axioms in DLs. We then present the
proposed extension to DIG 2.0, ad show an instantiation for the case of relational data
sources.

2 The DIG Interface

The DIG interface is an effort carried out by the DL Implementation Group (DIG) to
standardize interaction with DL reasoners. The specification defines the communication
mechanism to which DL reasoners (i.e., DIG servers) and clients comply. The interface
has been widely accepted and most well known ontology design tools and DL reasoners
have already incorporated it.

The DIG 1.0 interface [6] was given as a set of XSD schemas that define mes-
sages that server and client exchange and the assumptions to which the DIG server

2 http://kaon2.semanticweb.org/
3 http://www.dis.uniromal.it/ quonto/



should comply. The messages, divided in 7Tells and Asks, allowed the client to: query for
the server’s reasoning capabilities, transfer an ontology to the server, and ask standard
DL queries about the given ontology, e.g., concept subsumption, satisfiability, equiv-
alence, etc. The concept language used to describe DIG ontologies was based on the
SHOZOD,, DL.

The current version, DIG 2.0 [7], clearly separates the internal model, presented
in terms of UML diagrams, from the communication protocol. This allows for the im-
plementation of the interface in communication protocols different from the original
HTTP/XML based protocol, e.g., APIs in RPC, WSDL, etc. An XML based communi-
cation mechanism is still defined and can be obtained by directly deriving XSD schemes
from the interface’s UML model. The set of messages, called Requests and Responses,
has been enriched, allowing for a more robust handling of ontologies. The concept lan-
guage used in DIG 2.0 is OWL 1.1, implying full OWL compatibility. Additionally,
a clear mechanism for defining extensions to accommodate extra functionality in DIG
servers is also provided.

The DIG 2.0 Interface is divided in the core specification and a set of official exten-
sions. Functionalities described in these extensions include: non-standard inferences,
querying for told axioms, retracting fold axioms, explanation services, ABox querying,
among others. Now we elaborate on this last extension since we make use of it later on.

ABox Query Interface This interface proposed in [8] extends DIG with the capa-
bility to support query answering over the ABox. The query language allows for the
expression of Unions of Conjunctive Queries (UCQ) whose basic building blocks are
query atoms of different types (i.e., concept, role, equality, inequality, and concrete do-
main types). The interface doesn’t predefine specific semantics for query answering,
this is left to the implementor’s choice. The main element of the query language is the
Retrieve class, which encompass the query’s variables, head and body. Because of
space restrictions, we do not provide details here and we refer to the original document
for a full description.

3 Managing an ABox via a RDBMS

In this section, we briefly recall the main elements underlying the proposal in [3, 4] for
linking existing data stored in a relational database to the instances of the concepts and
roles in an ontology. This allows one to effectively manage an ABox via a Relational
Database Management System (RDBMS).

An important issue to be taken into account in this context is the notorious problem
of impedance mismatch between values (data) and objects, which is due to the fact that
relational sources store values, whereas instances of concepts are objects denoted by ad
hoc identifiers, which are different from data items. To address this problem, [4] pro-
poses to keep data value constants separate from object identifiers, and to consider a do-
main of object identifiers that are built from data values by applying function symbols.
More formally, the alphabet I of object identifiers is constituted by value constants
from a set I'y, and by object terms, i.e., expressions of the form f(dy,...,d,), where
f is a function symbol of arity n, and dy, . . ., d,, are again value constants.



Given I, we can define an ABox in the standard way as a finite set of membership
assertions, in which we may use not only value constants but object terms. To define
the semantics of such an ABox, we simply define an interpretation Z in the standard
way, and just note that the interpretation function - assigns a different element of the
interpretation domain to every object identifier in [» (i.e., we enforce the unique name
assumption on object identifiers).

We consider now the problem of linking objects in the ontology to the data in a
relational database DI5. We do so by relying on mapping techniques studied extensively
in data integration [1]. Specifically, we consider a set M of linking axioms, partitioned
into two sets, M; and M, where:

— M, is a set of assertions, called typing axioms, each one of the form
b~ T;

where @ is a query over DB denoting the projection of one relation over one of its
attributes, and T; is one of the data types provided by the DL;
— M, is a set of assertions, called mapping axioms, each one of the form

D~

where @ is a first-order logic query of arity n over D3, and ¥ is a conjunctive query
of arity n over the elements of the TBox 7, without non-distinguished variables,
that possibly includes terms in 1.

We recall from [4] that typing axioms are used to assign appropriate types to con-
stant values appearing in the relations of DIB. Basically, these assertions are used for
interpreting the values stored in the database in terms of the types used in the ontology.
Mapping axioms, on the other hand, are used to map data in the database to concepts,
roles, and attributes in the ontology.

It is worth noting that now that we have object terms, the data layer underlying
an ontology contains only data, whereas object identifiers are virtually built on top of
this data. Thus, autonomous data sources can effectively provide their portion of data
and contribute to the ontology instance-level, without being required to agree on any
particular object identification scheme.

An ontology with linking axioms in a Description Logic DL is then constituted by
atriple O,, = (7, M, DB), where

— 7 is a TBox expressed in DL,
— M is a set of linking axioms, and
— DB is a relational database.

In order to define the semantics of an ontology with linking axioms, we define when
an interpretation Z satisfies a set of linking axioms M w.r.t. a database DB. Specifically,
we say that 7 = (A%, T) satisfies M : & ~ ¥ w.r.t. DB if for each tuple ¢ of value
constants in Iy, if t € ans((ﬁ,DB)“, then we have that t£ € WZ. T is a model of

* We use ans(®, DB) to denote the set of tuples (of the arity of &) of value constants returned
as the result of the evaluation of the query ¢ over the database DB.



O = (T, M, DB) if and only if 7 is a model of 7 and satisfies M w.r.t. DBB. With
the notion of model in place, we can define all reasoning services over ontologies with
linking axioms in the usual way.

Example 1. Consider the following: (a) an ontology O consisting of the axioms:
Student T IName, Student T dlLastname, CumLaudeStudent T Student, where
Name and Lastname are concrete domain roles (i.e., attributes); (b) a database D5 and
arelation R € DB that stores information about students; (c¢) attributes n, [, gpa of R,
which store the name, lastname, and gpa of students respectively; (d) n, [ is a binary
key for R; (e) n, [ are strings. Now we present mapping m;, which is a mapping ax-
iom, stating how tuples in R are related to CumLaudeStudent individuals, and typing
axioms msy, mg, which fype the attributes n and [ of R w.r.t. the value domains of O:

my @ qhy(n,l) < R(n,l, gpa), gpa > 175 -~
qo(stud(n,l),n,l) «— CumLaudeStudent(stud(n,l)),
Name(stud(n,l), n), Lastname(stud(n, ), 1)
ma : q%(n) — R(n,l,gpa) ~~ name
ms : qy(1) — R(n,l,gpa) ~  lastname

where each qfib is a First-Order (i.e., SQL) query expressed over R, qo is a CQ over O,
stud(n, ) is a function from name-lastname pairs to ', and name and lastname are
the concrete value domains for strings representing names and lastnames, respectively.

4 DIG Extension

We introduce an extension to the DIG 2.0 Specification [ 7] and the DIG 2.0 ABox Query
Interface [8] that allows for the representation and management of ontologies with link-
ing axioms, which are used to populate the ABox with data from different data sources.
The extension can cover any type of linking assertion and data source by defining a gen-
eral framework, and allowing the implementor to define specific types of data sources
and linking axioms. We also present one implementation of the framework aiming at
covering the requirements of linking RDBMS data sources to ontologies based on the
work presented in [4].

In the following subsections, we describe the extension by first introducing the gen-
eral framework. Next, we introduce the implementation of the framework for RDBMS
data sources. Finally, we present the extensions to the DIG request and response classes,
which define the interaction with the DIG server. The extension is presented in terms of
UML models. One can directly translate the UML models as described in the original
DIG 2.0 specification to obtain the corresponding XSD schemas describing the XML
based messages [7].

4.1 Ontologies, Data Sources, and Linking Axioms

In Figure 1, we show the classes that compose the framework. These are abstract classes
intended to be the base for implementations. Next we elaborate on them.
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Fig. 1. DIG 2.0 ontology with linking axioms and data sources

A DataSource stands for any possible source of data which could be used to popu-
late an ontology’s ABox. It is related to a set of DataSourceParameters, which provide
the information that the DIG server requires to interact (e.g., establish a connection to a
server, access a file, etc.) with the given data source. Each data source is identified by a
unique datasourceURI and each data source parameter is identified by a parameterURI.
A data source or data source parameter can have any number of owlAnnotations, which
can be used to attach human readable information. An annotation will have no effect on
the interaction of the DIG server with the data source, as is the case with annotations in
OWL 1.1.

A LinkingAxiom is part of an ontology and is associated to a data source. It indi-
cates the relationship between data in the data source and elements of the ontology.
Annotations can be associated also to linking axioms. The main elements of a linking
axiom are the SourceQuery and the TargetQuery. A source query is a specification of
how to extract data from the source expressed in some given query language. We do
not restrict a priori the query language, which in the most general case could be any
computation over the source. Restriction on the query language is done in implement-
ing classes. A target query is a specification of how to extract data over the ontology. As
with source queries, there are no restrictions on the language, and implementing classes
should define them. A linking axiom states that the data described by the source query
is related to the objects described by the target query. The specific way in which this
data is related is specified by specific LinkingAxiom implementations.

4.2 RDBMS Data Sources, Linking Axioms, and Parameters

Now we present an implementation of the framework whose goal is to allow for the
representation of linking axioms of the form presented in [4] (see Figure 2).

An RDBMSDataSource stands for any RDBMS accessible to the DIG server. Re-
lated to an RDBMSDataSource there is a set of parameters. The class RDBMSPa-
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Fig. 2. Implementation of the framework for RDBMS data sources
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Fig. 3. Linking Axioms

rameter defines a set of URIs of parameters that are always present in any RDBMS-
DataSource. These URIs are: RDBMSIP, RDBMSUsername, RDBMSPassword, and
RDBMSDatabaseName. The purpose of the parameters identified by these URISs is self
explanatory.

An RDBMSLinkingAxiom is related to a RDBMS data source (see Figure 3). We
define two types of RDBMS linking axioms, the TypingAxiom and the MappingAxiom,
which correspond to typing and mapping axioms of Section 3, respectively.

A MappingAxiom is a statement of relationship between a query over an RDBMS
data source and a query over the DIG ontology. In a mapping axiom, the source query
is represented as an SQLQuery, which is characterized by a guery attribute, containing
a well formed SQL query, and an arity attribute, indicating the arity of the query. The
target query is expressed as an UCQ represented as a Retrieve object (see Section 2)
extended by allowing function symbols in query atoms (see Section 3).

A TypingAxiom is a statement of relationship between an attribute of a relation and
an OWL data type. In a typing axiom, the source query is represented by an SQLPro-
Jjection, which stands for the projection of the attribute attributeName over the relation
relationName. The target query is represented by an OWL 1.1 data type. The semantics
of the typing axiom is as in [4].

ABox Query Interface Extension To allow for the type of mappings men-
tioned in Section 3, we extend the ABox Query Interface by allowing for the ap-



<MappingAxiom>

<SQLQuery query="SELECT name, lastname
FROM R
WHERE gpa >= 7.5"
arity="2" />
<Retrieve>
<QueryHead>
<QueryFunction URI="#stud">
<QueryVariable URI="#name"/>
<QueryVariable URI="#lastname"/>
</QueryFunction>
<ConcreteDomainQueryVariable
URI="#name"/>
<ConcreteDomainQueryVariable
URI="#lastname"/>
</QueryHead>
<QueryBody>
<QueryObjectIntersectionOf>

<ConcreteDomainQueryAtom>
<QueryFunction URI="#stud">
<QueryVariable URI="#name"/>
<QueryVariable
URI="#lastname"/>
</QueryFunction>
<ConcreteDomainQueryVariable
URI="#name"/>
<owl:DataProperty
owl:URI="4#Name"/>
</ConcreteDomainQueryAtom>
<ConcreteDomainQueryAtom>
<QueryFunction URI="#stud">
<QueryVariable URI="#name"/>
<QueryVariable
URI="#lastname"/>
</QueryFunction>
<ConcreteDomainQueryVariable

URI="#lastname"/>
<owl:DataProperty
owl:URI="#Lastname"/>
</ConcreteDomainQueryAtom>
</QueryObjectIntersectionOf>

<ConceptQueryAtom>
<QueryFunction URI="#stud">
<QueryVariable URI="#name"/>
<QueryVariable URI="#lastname"/>
</QueryFunction>

<owl:OWLClass owl:URI=" </QueryBody>
#CumLaudeStudent"/> </Retrieve>
</ConceptQueryAtom> </MappingAxiom>

Fig. 4. Example of a mapping statement represented as an XML message

pearance of function symbols, in the form of <QueryFunction> elements, in
<ConceptQueryAtom> and <RoleQueryAtom> elements.

Example 2. In Figure 4, we present the instantiation of the MappingAxiom class for
mapping axiom m, from Example 1. The axiom is presented in the XML based im-
plementation of MappingAxiom. Notice the use of a function in query atoms within the
ABox Query.

4.3 Managing Data Sources and Linking Axioms

Now we present the extensions to the DIG 2.0 Requests and Responses that allow for
the management of ontologies as presented before. We first present the extensions for
data source management (see Figure 5) and later introduce the extensions for linking
axiom management (see Figure 6).

The CreateDataSourceAllocateURI request instructs the server to create a data
source and allocate a unique URI for it. The CreateDataSource request tells the DIG
server to create a new data source whos URI is dataSourceURI. The ReleaseDataSource
instructs the server to eliminate the given data source and should be used when a data
source is not to be accessed by the server anymore. The user is responsible for updating
or removing all linking axioms related to the released data source. The SetDataSour-
ceParameters takes a set of parameters and adds them to a data source. If a parameter
in the set has the same parameterURI as one of the parameters already in the data
source, the parameterValue and annotations of the old parameter should be replaced
with the new ones. The DIG server should answer with a Confirmation on successful
completion of the operations mentioned above. If an error is encountered, a DIG Er-
ror should be returned describing the issue. The sets of all annotations and parameters
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Fig. 5. Data source managements requests

of a given data source can be retrieved using the GetDataSourceAnnotations and Get-
DataSourceParameters requests, respectively. To which the server will respond with a
SetOfAnnotations and SetOfParameters, respectively.

Since linking axioms are part of the ontology (see Section 4.1), for the requests ex-
tension we use the DIG 2.0 RequestToOntology class which refers to the ontology in
the ontologyURI attribute. The GetAllLinkingAxioms request returns the set of all link-
ing axioms in the ontology. A TellLinkingAxioms request takes a set of linking axioms
and adds them to the ontology. The RetractLinkingAxioms takes a set of linking axioms
and removes every axiom in the ontology which is structurally equivalent’ to one of the
given axioms. A shortcut for removing all linking axioms in the ontology is given with
the RetractAllLinkingAxioms request. The server returns a Confirmation on successful
completion of these requests.

RequestToOntology

Response

D ontologyURIxsd:String

A

RetractLinkingAxioms TellLinkingAxioms RetractAllLinkingAxioms Confirmation SetOfLinkingAxioms

axioms axioms "+linkingAxioms

LinkingAxiom GetAllLinkingAxioms

* D datasourceURtDataSource{1]

Fig. 6. Linking Axiom Management Requests

3 Linking axioms are structurally equivalent if they are syntactically the same up to the order of
their annotations.



Finally, concerning the behavior of the DIG server w.r.t. the interaction with the data
sources, we define the following: (i) If it is impossible for the DIG server to interact with
a given data source, all source queries of all linking axioms related to that data source
should return an empty set and a warning should be issued to the client. (i7) If a linking
axiom refers to a data source with an unknown URI, the DIG server should respond
with an error indicating the issue.

5 Conclusions and Future work

The community working with DL reasoners is increasingly interested in being able to
retrieve data from existing data sources and link these data to their ontologies. As the
number of DL reasoners supporting such operation grows, the DIG Interface will need
to be able to handle this kind of interaction. Aiming at this, we presented an extension of
the DIG 2.0 interface that allows a DIG server to offer such a kind of functionality. We
present a framework for describing the data sources and the axioms that link them to the
ontology. Based on existing work, we introduce an implementation of the framework
that can handle RDBMS data sources and linking axioms relating this kind of sources
to the ontology using SQL and a form of UCQs. This proposal will be submitted to
the Description Logic Implementation group as a starting point for standardization of
the requirements described here. Software implementation for the QuOnto system [9]
is ongoing.
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