
SPARQL-DL: SPARQL Query for OWL-DL

Evren Sirin1 and Bijan Parsia2

1 Clark & Parsia, LLC, Washington, DC
evren@clarkparsia.com

2 Department of Computer Science, University of Manchester, UK
bparsia@cs.man.ac.uk

Abstract. There are many query languages (QLs) that can be used to query RDF
and OWL ontologies but neither type is satisfactory for querying OWL-DL on-
tologies. RDF-based QLs (RDQL, SeRQL, SPARQL) are harder to give a seman-
tics w.r.t. OWL-DL and are more powerful than what OWL-DL reasoners can
provide. DL-based QLs (DIG ask queries, nRQL) have clear semantics but are
not powerful enough in the general case. In this paper we describe SPARQL-DL,
a substantial subset of SPARQL for which we provide a clear OWL-DL based se-
mantics. SPARQL-DL is significantly more expressive than existing DL QLs (by
allowing mixed TBox/RBox/ABox queries) and can still be implemented without
too much effort on top of existing OWL-DL reasoners. We discuss design deci-
sions and practical issues that arise for defining SPARQL-DL and report about
our preliminary prototype implemented on top of OWL-DL reasoner Pellet.

1 Introduction

The query languages (QLs) for Semantic Web ontologies can be classified under two
categories: RDF-based QLs and DL-based QLs. RDF-based query QLs, such as RDQL3,
SeRQL4 and the upcoming W3C recommendation SPARQL [1], are based on the no-
tion of RDF triple patterns and their semantics is based on matching triples with RDF
graphs. It is harder to provide a semantics for these QLs under OWL-DL semantics
because RDF representation mixes the syntax of the language with its assertions. The
triple patterns in a query do not necessarily map to well-formed OWL-DL constructs.
DL-based QLs such as the ASK queries of DIG protocol [2] or nRQL queries of Racer-
Pro system [3], on the other hand, have well-defined semantics based on the DL model
theory. However, DIG queries are limited to atomic (TBox or RBox or ABox) queries
whereas nRQL supports only conjunctive ABox queries.

Our primary goal in this paper is to define a powerful and expressive query language
for OWL-DL that can combine TBox/RBox/ABox queries. We also want our query
language to align with SPARQL to improve the interoperability of applications on the
Semantic Web. The other, rather competing, goal is to keep the query language simple
enough that it can be easily built on top of existing OWL-DL reasoners.

To satisfy these requirements, we define SPARQL-DL, a substantial subset of SPARQL
that can be covered by the standard reasoning services OWL-DL reasoners provide. We

3 http://www.w3.org/Submission/RDQL/
4 http://www.openrdf.org/doc/sesame/users/ch06.html

2

provide a semantics for SPARQL-DL which is directly based on the OWL-DL entail-
ment relation. The semantics we present is also in agreement with the way the SPARQL
specification envisions future extensions [1].

In the rest of the paper, we first present some background information for SPARQL
and OWL-DL. We then describe several different ways SPARQL-DL can be defined and
explain how we settled on our choice. We provide an abstract syntax for SPARQL-DL
queries, define the semantics based on OWL-DL model theory, and provide a map-
ping from SPARQL-DL abstract syntax to RDF graph form, which can also be used
for reverse transformation. There are various possibilities to extend our formulation of
SPARQL-DL to allow more expressive and flexible queries. In Section 5, we analyze
some of these possibilities and discuss the feasibility of such extensions. Throughout
the paper we primarily focus on OWL-DL but SPARQL-DL can be directly used in
conjunction with OWL-Lite or OWL 1.1 as we will discuss in Section 5.2.

2 Preliminaries

We will give a very brief overview of SPARQL and OWL-DL semantics in the next
sections. Readers are referred to [1] and [4] for more detailed information. Throughout
the paper we will use qnames to shorten URIs with rdf, rdfs, and owl prefixes to refer to
standard RDF, RDF-S and OWL namespaces, respectively. We will also use the prefix
ex to refer to an arbitrary example namespace.

2.1 SPARQL Syntax and Semantics

SPARQL is a query language developed primarily to query RDF graphs. The vocabulary
for RDF graphs is three disjoint sets: a set of URIs Vuri, a set of bnode identifiers
Vbnode, and a set of well-formed literals Vlit. The union of these sets is called the set
of RDF terms. An RDF triple is a tuple (s, p, o) ∈ (Vuri ∪ Vbnode) × Vuri × (Vuri ∪
Vbnode ∪ Vlit). An RDF graph is a finite set of RDF triples.

The building block for SPARQL queries is Basic Graph Patterns (BGP). A SPARQL
BGP is a set of triple patterns. A triple pattern is an RDF triple in which zero or more
variables might appear. Variables are taken from the infinite set Vvar which is disjoint
from the above mentioned sets. A solution to a SPARQL BGP w.r.t. to a source RDF
graph G is a mapping µ from the variables in the query to RDF terms such that the
substitution of variables in the BGP would yield a subgraph of G (according to the
definition of subgraph matching in RDF semantics [5]). Note that, the bnodes in the
query (as bnodes in the source graph) are treated as existential variables, i.e. they are
non-distinguished variables.

More complex SPARQL queries are constructed from BGPs by using projection
(SELECT operator), left join (OPTIONAL operator), union (UNION operator) and con-
straints (FILTER operator). The semantics for these operations are defined as algebraic
operations over the solutions of BGPs [6]. Thus, an alternative semantics that replaces
simple graph matching criteria can be given by simply providing a different solution
condition for BGPs as we will provide later in the paper.

3

2.2 OWL-DL Syntax and Semantics

OWL-DL, despite being based on RDF, has a quite different semantics. An OWL-DL
vocabulary partitions the set Vuri into many mutually disjoint sets. Formally, an OWL-
DL vocabulary VO = (Vcls,Vop,Vdp,Vap,Vind,VD,Vlit) is a 7-tuple where Vcls is the
set of URIs denoting class names, Vop is the set of URIs denoting object properties,
Vdp is the set of URIs denoting datatype properties, Vap is the set of URIs denoting
annotation properties, Vind is the set of URIs denoting individuals, VD is the set of URIs
denoting datatype names, and Vlit is the set of well-formed RDF literals. In OWL-DL,
Vuri is the union of Vcls, Vop, Vdp, Vap, Vind, and VDand does not include any of builtin
URIs from RDF, RDF-S, or OWL namespace.

OWL-DL provides several constructs to generate complex class expressions from
named classes. The set of OWL-DL classes (written Sc) is defined inductively using the
following grammar:

C ← A | not(C) | and(C1, . . . , C2) | or(C1, . . . C2) | {a} | some(p, C) | all(p, C) |
min(n, q) | max(n, q) | some(t, D) | all(t, D) | min(n, t) | max(n, t)

where A ∈ Vcls, C(i) ∈ Sc, a ∈ Vind, p ∈ Vop, q ∈ Vop and it is simple5, t ∈ Vdp,
D ∈ VD, and n is a non-negative integer.

Let VO be an OWL vocabulary. An interpretation I = (∆I , ·I) is a tuple where ∆I ,
the domain of discourse, is a union of two disjoint sets ∆I

O (the object domain) and ∆I
D

(the data domain); and I is the interpretation function that gives meaning to the entities
defined in the ontology. I maps each OWL class C ∈ Vcls to a subset CI ⊆ ∆I

O, each
object property p ∈ Vop to a binary relation pI ⊆ ∆I

O × ∆I
O, each datatype property

t ∈ Vdp to a binary relation tI ⊆ ∆I
O × ∆I

D, each annotation property pa ∈ Vap to
a binary relation tI ⊆ ∆I × ∆I , each individual a ∈ Vind to an element aI ∈ ∆I

O,
each datatype D ∈ VD to a subset DI ⊆ ∆I

D, and each literal l ∈ Vlit to an element
lI ∈ ∆I

D. The interpretation function is extended to complex class expressions in the
usual way as explained in detail in [4].

An ontology contains a finite number of class, property and individual axioms.
There are many syntactic forms for axioms in OWL-DL, but most of these axioms are
syntactic sugar and can be expressed as a combination of SubClassOf(C1, C2), Sub-
PropertyOf(p1, p2) and Transitive(p) axioms. The following table shows the conditions
under which an interpretation I satisfies an axiom6:

Axiom Condition on interpretation
SubClassOf(C1, C2) CI

1 ⊆ CI
2

SubPropertyOf(p1, p2) pI1 ⊆ pI2
Transitive(p) 〈x, y〉 ∈ pI and 〈y, z〉 ∈ pI implies 〈x, z〉 ∈ pI

We say that an an ontology O is consistent if there exists an interpretation I that
satisfies all the axioms in O; such I is then called a model of O. O entails an axiom α
if every model of O satisfies α. O entails another ontology O′ if every model of O is
also a model of O′.

5 See [4] for a precise definition of simple roles
6 Note that, in OWL-DL annotations are treated as special kind of axioms which are satisfied by

an interpretation only if they explicitly exist in the ontology

4

3 Roadmap for SPARQL-DL

SPARQL is designed so that its graph matching semantics can be extended to an arbi-
trary entailment regime [1]. A graph in the range of an entailment regime E is called
well-formed for the E-entailment. The condition for E-entailment is defined as follows
in the SPARQL specification: After the variables in a BGP are substituted with constant
terms, the BGP should be well-formed for E-entailment and entailed by the source
document.

As explained in the previous section, there is a well-defined entailment relation be-
tween valid OWL-DL ontologies. Therefore, as a minimal condition, we would require
the variable substitution to yield a valid OWL-DL ontology (without the OWL-DL re-
quirement that every entity is typed because the source ontology is already supposed
to have the typing information). However, if we allow the variables to be mapped to
arbitrary URIs, especially to the ones from the builtin OWL vocabulary, we might end
up having rather unusual queries although the substitution yields a valid OWL-DL on-
tology. For example, consider the query pattern

?C rdfs:subClassOf _:x .
_:x rdf:type owl:Restriction .
_:x owl:onProperty ex:q .
_:x ?p ?C .

where substituting the variable ?C with a URI denoting a class name and the variable
?p with owl:allValuesFrom or owl:someValuesFrom yields a valid OWL-DL ontology.
This is a rather unusual query because the variable ?p ranges over the quantifiers of
the language. Although such a query is not expressible in First Order Logic (FOL),
answering this query is possible (assuming that the variable ?C can only be mapped to
named classes). Since we can enumerate both the classes defined in the ontology and
the quantifiers of the language, we can simply try every substitution and check for the
entailment of the resulting axiom. However, such a query evaluation strategy would be
highly inefficient and the utility of such queries is arguable.

There are other cases where we would like to ask queries that are not expressible in
FOL. Consider a very simple query like:

ex:a rdf:type ?C .

that asks for the types of an individual ex:a. This is also a higher order query because
a variable is used in the predicate position. Although this query is not expressible as a
DL ABox query, a DL reasoner that provides the realization service can easily answer
this query.

Our goal is to define an entailment regime for SPARQL based on OWL-DL which
can be implemented in a rather straightforward way. For this reason, we adopt the
strategy of how OWL-DL is defined: We first start by defining an abstract syntax for
SPARQL-DL queries, describe its semantics, and then provide a transformation from
the abstract syntax to the triple patterns of SPARQL.

5

4 SPARQL-DL

4.1 SPARQL-DL Abstract Syntax

Let VO = (Vcls,Vop,Vdp,Vap,Vind,VD,Vlit) be an OWL-DL vocabulary. Let Vbnode

and Vvar be the set of bnode identifiers and set of variables as before. A SPARQL-DL
query atom q is of the form:

q ← Type(a,C) | PropertyValue(a, p, v) | SameAs(a, b) | DifferentFrom(a, b) |
EquivalentClass(C1, C2) | SubClassOf(C1, C2) | DisjointWith(C1, C2) |
ComplementOf(C1, C2) | EquivalentProperty(p1, p2) | SubPropertyOf(p1, p2) |
InverseOf(p1, p2) | ObjectProperty(p) | DatatypeProperty(p) | Functional(p) |
InverseFunctional(p) | Transitive(p) | Symmetric(p) | Annotation(s, pa, o)

where a, b ∈ Vuri∪Vbnode∪Vvar, v ∈ Vuri∪Vlit∪Vbnode∪Vvar, p, q ∈ Vuri∪Vvar,
C,D ∈ Sc ∪ Vvar, s ∈ Vuri, pa ∈ Vap, o ∈ Vuri ∪ Vlit. A SPARQL-DL query Q is
a finite set of SPARQL-DL query atoms and the query is interpreted as the conjunction
of the elements in the set.

We can represent various different queries with the atoms we defined. Table 1 shows
some example queries asked against a fictional ontology of universities. Query Q1 and
Q2 are just examples of standard DL queries. Query Q3 shows how bnodes are used as
non-distinguished variables. For example, suppose we have the following KB:

PropertyValue(person1,hasPublication,paper1),Type(paper1,ConferencePaper),
SubClassOf(ConferencePaper,some(publishedAt,Conference)),
DisjointWith(Conference,Workshop)

Then, query Q3 would have a solution even though we do not know at which conference
the paper is published. Query Q4 shows a novel aspect of OWL-DL where we mix
an ABox and a TBox query. In this query, we are not only asking for students that
are also employees (as we did in Q2) but we also would like to learn what kind of
employee they are (ResearchAssistant and AdministrativeAssistant being some of the
possibilities). Query Q5 shows another possibility where we mix an RBox query with
an ABox query to retrieve all the object property values for a specific individuals. Note
that many different query types can be constructed by mixing different types of query
atoms.

Query Type of the query An example query
Q1 Standard TBox query SubClassOf(?c, ex:Student)
Q2 Standard ABox query Type(?x, and(ex:Student, ex:Employee)),

PropertyValue(?x, ex:name, ?y)

Q3 ABox query with PropertyValue(?x, ex:hasPublication, :y),
non-distinguished variables PropertyValue(:y, ex:publishedAt, :z),

Type(:z, not(ex:Workshop))

Q4 Mixed ABox/TBox query Type(?x, ex:Student), Type(?x, ?c)
SubClassOf(?c, ex:Employee),

Q5 Mixed ABox/RBox query ObjectProperty(?p),
PropertyValue(ex:John, ?p, ?v)

Table 1. Example SPARQL-DL queries showing some possible uses

6

4.2 SPARQL-DL Semantics

The semantics of SPARQL-DL is very similar to the semantics of OWL-DL. We specify
the conditions under which an interpretation satisfies a query atom in much the same
way that satisfaction is defined for OWL-DL axioms. We will define the satisfaction for
only atoms that have no distinguished variables (i.e. there might still be bnodes in the
atom). We will call such atoms semi-ground query atoms.

Let O be an OWL-DL ontology, VO = (Vcls,Vop,Vdp,Vap,Vind,VD,Vlit) the vo-
cabulary forO, and I = (∆I , ·I) be an interpretation forO. We say that a semi-ground
query atom is compatible with the vocabulary VO if all the URIs used in query atoms
are typed correctly, e.g. for Type(a,C) we have a ∈ Vind and C ∈ Sc and so on.

We define an evaluation σ : Vind ∪ Vbnode ∪ Vlit → ∆I to be a mapping from the
individual names, bnodes, and literals used in the query to the elements of interpreta-
tion domain ∆I with the requirement that σ(a) = aI if a ∈ Vind or a ∈ Vlit. The
interpretation I satisfies a semi-ground query atom q w.r.t. σ (denoted as I |=σ q) if
q is compatible with VO and the corresponding condition in Table 2 is satisfied. Note
that, the query atoms ObjectProperty and DatatypeProperty are not in this table because
they are satisfied by every interpretation as long as they are compatible with VO.

The interpretation I satisfies a query Q = q1 ∧ . . . ∧ qn w.r.t. an evaluation σ
(written I |=σ q) iff I |=σ qi for every i = 1, . . . , n. Note that, we are only interested
in the existence of an evaluation and we simply say that I satisfies a query Q (written
I |= Q) if there exists an evaluation σ such that I |=σ Q. Finally, we say that Q is
a logical consequence of the ontology O (written O |= Q) if the query is satisfied by
every model of O, i.e. I |= O implies I |= Q.

A solution to a SPARQL-DL query Q = q1 ∧ . . . ∧ qn w.r.t. an OWL-DL ontology
O is a variable mapping µ : Vvar → Vuri ∪ Vlit such that when all the variables in Q

Form of the query atom Condition on interpretation
Type(a, C) σ(a) ∈ CI

PropertyValue(a, p, v) 〈σ(a), σ(v)〉 ∈ pI

SameAs(a, b) σ(a) = σ(b)

DifferentFrom(a, b) σ(a) 6= σ(b)

SubClassOf(C1, C2) CI
1 ⊆ CI

2

EquivalentClass(C1, C2) CI
1 = CI

2

DisjointWith(C1, C2) CI
1 ∩ CI

2 = ∅
ComplementOf(C1, C2) CI

1 = ∆I \ CI
2

SubPropertyOf(p, q) pI ⊆ qI

EquivalentProperty(p, q) pI = qI

Functional(p) 〈x, y〉 ∈ pI and 〈x, z〉 ∈ pI implies y = z

InverseFunctional(p) 〈y, x〉 ∈ pI and 〈z, x〉 ∈ pI implies y = z

Transitive(p) 〈x, y〉 ∈ pI and 〈y, z〉 ∈ pI implies 〈x, z〉 ∈ pI

Symmetric(p) 〈x, y〉 ∈ pI implies 〈y, x〉 ∈ pI

Annotation(s, pa, o) 〈s, o〉 ∈ pIa
Table 2. Satisfaction of a SPARQL-DL query atom w.r.t. an interpretation

7

are substituted with the corresponding value from µ we get a semi-ground query µ(Q)
compatible with VO and O |= µ(Q). The solution set S(Q) for a query Q is the set of
all such solutions.

4.3 From Abstract Syntax to RDF Graphs

The translation from SPARQL-DL abstract syntax to RDF triples form (which is used
in the SPARQL specification) is done in a similar fashion to the translation of OWL-
DL ontologies to RDF graphs. We use the function T from [4] that maps complex class
expressions to one or more RDF triples. Anything other than complex class expres-
sions (URIs, bnodes, literals, variables) will be mapped to itself without any additional
triples, i.e. T(x) = ∅. Table 3 shows the resulting set of RDF triples from translating
a SPARQL-DL atom. When the transformation of a component is used as the subject,
predicate, or object of a triple, that transformation is part of the result and the main node
of that transformation (as defined in [4]) should be used in the triple. The translation of
a SPARQL-DL query is simply the union of the RDF triples generated from translating
each atom in the query. We say that any SPARQL BGP is well-formed for SPARQL-DL
if it is equal to the transformation of a SPARQL-DL query in abstract syntax form.

Query Atom in Abstract Syntax Translation to RDF Graph Form
Type(a, C) 〈a, rdf:type, T(C)〉
PropertyValue(a, p, v) 〈a, p, v〉
SameAs(a, b) 〈a, owl:sameAs, b〉
DifferentFrom(a, b) 〈a, owl:differentFrom, b〉
SubClassOf(C1, C2) 〈T(C1), rdfs:subClassOf, T(C2)〉
EquivalentClass(C1, C2) 〈T(C1), owl:equivalentClass, T(C2)〉
DisjointWith(C1, C2) 〈T(C1), owl:disjointWith, T(C2)〉
ComplementOf(C1, C2) 〈T(C1), owl:complementOf, T(C2)〉
SubPropertyOf(p, q) 〈p, rdfs:subPropertyOf, q〉
EquivalentProperty(p, q) 〈p, owl:equivalentProperty, q〉
ObjectProperty(p) 〈p, rdf:type, owl:ObjectProperty〉
DatatypeProperty(p) 〈p, rdf:type, owl:DatatypeProperty〉
Functional(p) 〈p, rdf:type, owl:FunctionalProperty〉
InverseFunctional(p) 〈p, rdf:type, owl:InverseFunctional〉
Transitive(p) 〈p, rdf:type, owl:TransitiveProperty〉
Symmetric(p) 〈p, rdf:type, owl:SymmetricProperty〉
Annotation(s, pa, o) 〈s, pa, o〉

Table 3. Mapping from abstract SPARQL-DL syntax to RDF triples

5 Extensions to SPARQL-DL

There are various possibilities to extend our definition of SPARQL-DL and relax some
of the restrictions. In what follows, we will first present some straightforward extensions
and then mention some non-trivial extensions that cause semantic or practical problems.

8

5.1 Querying the Class/Property Hierarchy

One common task for ontology-based applications is to compute the class hierarchy
using a reasoner. To make this task easier, DL reasoners provide API functions to get
the direct subclasses of a class. A direct subclass is a subclass that would appear as a
direct child in the hierarchy tree. Without this function one would require ad hoc code
to manipulate the results from several different subclass queries. One other common
query type is to get the strict subclasses of a given class, i.e. subclasses that are not
equivalent to the given class. With standard SPARQL queries, such a query would also
require one to first retrieve all subclasses, then all equivalent classes, and remove the
second result set from the first result set.

In the next table, we show three additional query atoms StrictSubClassOf, Direct-
SubClassOf and DirectType and define their semantics based on the entailment of our
original query atoms.

Query atom Semantics based on entailment
O |= StrictSubClassOf(C1, C2) O |= SubClassOf(C1, C2) and

O 6|= SubClassOf(C2, C1)
O |= DirectSubClassOf(C1, C2) O |= StrictSubClassOf(C1, C2) and 6 ∃C ′ ∈ Vcls s.t.

O |= StrictSubClassOf(C1, C
′) and

O |= StrictSubClassOf(C ′, C2)
O |= DirectType(a,C) O |= Type(a,C) and 6 ∃C ′ ∈ Vcls s.t.

O |= Type(a,C ′) andO |= StrictSubClassOf(C ′, C)

Note that, the semantics for these atoms are non-monotonic because they require
a query atom not to be entailed (which is not same as the entailment of that atom’s
negation). Therefore, unlike any other query atom we described so far, adding a new
axiom to the KB could invalidate the results for these atoms.

We can now retrieve the whole class hierarchy by simply executing a query with
the single atom DirectSubClassOf(?C1, ?C2) and then process the results starting from
the result where C2 is mapped to owl:Thing. Note that similar operators can easily be de-
fined for super classes (DirectSuperClass) and property hierarchies (DirectSubPropertyOf
and DirectSuperPropertyOf) but we leve their definitions out due to space limitations.

5.2 Supporting OWL 1.1

Our formulation of SPARQL-DL is not strongly tied to any feature in OWL-DL and
the definitions can easily be migrated to OWL 1.1. For supporting OWL 1.1 in the real
sense, one would like to have more query atoms specific to OWL 1.1 features, e.g.
Reflexive(p) to test for the reflexivity of a property.

Unlike OWL-DL, there is no vocabulary separation restriction in OWL 1.1. Using
punning semantics, it is possible to use the same URI to denote multiple entities. This
means that we need to make the type of properties explicit in our query atoms as it is
done in the OWL 1.1 abstract syntax, e.g. use SubObjectPropertyOf and SubDataProp-
ertyOf instead of SubPropertyOf. This is simply because if a URI ex:p is declared both
as an object and a datatype property, the result of SubObjectPropertyOf(?x, ex:p) will
probably be different from the results of SubDataPropertyOf(?x, ex:p).

9

5.3 Non-trivial Extensions

Allowing Variables in Different Positions Our formulation of SPARQL-DL restricts
where variables can occur. For example, we do not allow variables inside complex con-
cept expressions; so one cannot use a query atom SubClassOf(owl:Thing, all(?p, ex:C))
to find all the properties whose range is the class ex:C. This would certainly let one
ask more powerful queries and it is still easy to define the semantics for these atoms
(as long as the we keep the restriction that variables can be bound to only named
entities). One might even want to use a variable in the cardinality position, e.g. Sub-
ClassOf(ex:C,min(?n, ex:p, owl:Thing)) would return the value of the cardinality re-
striction on a specific property. However, this relaxation would make query evaluation
much harder as it would not be possible to reduce query answering to standard rea-
soning services. To keep the language simple and easy to implement we excluded this
possibility.

Concept Expressions in Results In SPARQL-DL, a query result maps variables to
constants (named entities or literals). However, there are cases where one would like to
see arbitrary class expressions in query results. An example query is SubClassOf(C1, ?C),
SubClassOf(C2, ?C) which asks for the common subsumers of classes C1 and C2.
However, without a clear definition of what kind of expressions can be included in the
results, a reasoner might return infinitely many results (by generating conjunctions, dis-
junctions and nested value restrictions). We would also have problems encoding these
results in standard SPARQL results format because variables are mapped to constants.
One possibility is to define special purpose query atoms such as LeastCommonSub-
sumer(C1, C2, LCS) for which class expressions are allowed in results. The results
for these queries would be returned in a free-form style as in DESCRIBE queries of
SPARQL since we cannot know a priori what kind of class expressions will be returned.

Existential Variables (Bnodes) in Results As we explained earlier, bnodes in queries
correspond to non-distinguished variables. For example, if we have an ontology with
the assertion Type(ex:a, some(ex:p, ex:C)), the query Q1 = PropertyValue(?x, ?y) will
not return any results because we do not know the name of the individual that variable
?y will be mapped to. On the other hand, the query Q2 = PropertyValue(?x, :y) would
be successful. One might relax the restriction in SPARQL-DL and let variables to be
mapped to bnodes in the results. Then the result for Q1 would map the variable y to a
unique bnode identifier, say :b. One might even let these bnode identifiers to be used
in subsequent queries; so, for example, the query Q3 = Type(:b, ?C) would return the
answer ex:C. However, such an extension creates many practical problems because for
each bnode identifier used in the query the reasoner would need to determine if it refers
to a previously returned result or an arbitrary bnode identifier. It would also be difficult
to avoid clashes for bnode identifiers in a distributed environment such as the Web.

6 Implementation

We have implemented a prototype SPARQL-DL query engine by extending Pellet’s
optimized ABox query engine [7]. We also support the extensions described in Sec-

10

tion 5.1. The SPARQL-DL query engine works by first evaluating the TBox and RBox
related atoms in the query (if there are any). We substitute the class or property vari-
ables using these solutions and reduce the rest of the query to a set of standard ABox
queries. Answering ABox queries that contain cycles of non-distinguished variables
w.r.t. an OWL-DL ontology is an open research problem and is not currently supported
by Pellet. Other types of queries with non-distinguished variables are answered with
the standard rolling-up technique [8].

Our implementation is still in a preliminary stage and since there are no standard
benchmark problems for the mixed TBox/RBox/ABox queries we are considering, we
do not yet have any performance evaluation of the overall system. But it clear that
a query such as Type(?x, ?C) asked against a very large ABox is not practical since
answering this query would require the reasoner to do instance retrieval for every class
in the ontology (or realize the whole ontology which is equivalently impractical).

Our query engine can only answer SPARQL-DL subset of SPARQL BGPs. Our
plan is to integrate Pellet query engine with a query engine that handles the SPARQL
algebra. This way, the SPARQL engine can use the results Pellet generates for BGPs to
answer more complex queries that involve OPTIONAL, UNION, or FILTER constructs.

7 Conclusions

In this paper, we have presented SPARQL-DL as a query language for OWL-DL ontolo-
gies. SPARQL-DL is a step between RDF QLs that are too unstructured w.r.t. OWL-DL
and DL QLs which are not as expressive. We believe SPARQL-DL would help interop-
erability on the Semantic Web as it bridges this gap. As part of future work, we intend
to investigate other possible extensions to SPARQL-DL including (but not limited to)
aggregation operators, epistemic operators (and negation as failure), and regular expres-
sions on OWL properties.

References

1. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Working Draft
http://www.w3.org/TR/rdf-sparql-query/ (2006)

2. Bechhofer, S., Möller, R., Crowther, P.: The DIG description logic interface. In: Proc. of the
Int. Description Logics Workshop (DL 2003). (2003)

3. Haarslev, V., Moller, R., Wessel, M.: Querying the Semantic Web with Racer+ nRQL. In:
Proc. of the KI-04 Workshop on Applications of Description Logics. (2004)

4. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Semantics and Abstract Syntax. W3C
Recommendation http://www.w3.org/TR/owl-semantics/ (2004)

5. Hayes, P.: RDF semantics. W3C Recommendation http://www.w3.org/TR/rdf-mt/ (2004)
6. Perez, J., Arenas, M., Gutierrez, C.: The semantics and complexity of SPARQL. In: 5th

International Semantic Web Conference (ISWC 2006). (2006)
7. Sirin, E., Parsia, B.: Optimizations for answering conjunctive abox queries. In: Proceedings

of the International Workshop on Description Logic (DL-2006). (2006)
8. Horrocks, I., Tessaris, S.: Querying the semantic web: A formal approach. In: Proc. of the

13th Int. Semantic Web Conf. (ISWC 2002). (2002) 177–191

