Querying multiple sources with OWL ontologies:
an exploratory study in an automotive company

Pierre Mariot!, Jean-Pierre Cotton', Christine Golbreich?,
Alain Berger!, Frangois Vexler!

! Ardans, 2 rue Héléne Boucher, 78286 Guyancourt, France

pmariot@ardans.fr

2 University of Versailles Saint-Quentin, 55 Av. des Etats-Unis , 78035 Versailles, France
Christine.Golbreich@uvsq.fr

Abstract. Large companies often store information and knowledge in multiple
information systems using various models and formats. A main stake is to
retrieve the relevant knowledge for a specific concern. We present an
exploratory study for a large automotive company faced to this problem. A first
mock-up has been built using OWL ontologies and KAON?2. Different
questions arose during its development: how to organize the ontologies? how to
communicate with knowledge sources? how to support the user for query
formulation? which languages and techniques to use? This paper presents the
provisory solutions adopted and possible alternatives considered.

1. Introduction

Large manufacturers are storing information and knowledge in multiple information
systems using many formats. These systems are most often dedicated to specific
activities and are not designed to communicate. Hence, users usually access i only one
or two sources of knowledge during their work and ignore the existence of other
possibly relevant sources. This prevents them from having the possibility to enlarge
their view and to take into account other constraints or other solutions issued from
other departments of the same company. To tackle the increasing complexity of new
products design and manufacturing, large companies need to share information and
knowledge through their multiple departments. This paper relates an exploratory
study investigating this problem for an important automotive company. It describes
the mock-up built to that end. The proposed approach is based on several ontologies
designed to facilitate accessing and querying the different available knowledge
sources. With a single query, the user gets the different answers issued from the
different sources (I, J, K, Fig. 1).

2. Architecture

Semantic portal Domain ontologies
Request
elaboration
..... — “A”: Company Ontology
(oY}
S % % .
Q Department Ontologies
Results ‘B’ “c”
Mapping |Mapping:TooI Module D| | “H” | Results

organiser

Local ontologies 4

search criteria

|Web servicel [Web servicd [Web servicd
I I T

v I v I v I
Knowledge Knowledge Knowledge
source “I” source “J” source “K”

Fig. 1: Global architecture

The global architecture consists of several components: (i) existing knowledge
sources, (ii) local ontologies, (iii) domain ontologies (global ontology), and (iv)
mappings between global and local ontologies.

Knowledge Sources. In this experiment there were three knowledge sources to be
queried: a source dedicated to Logistics (I Fig. 1), a source dedicated to Air-
Conditioning Design (J), a source dedicated to Opening Design (K). They were
developed independently, using different tools: I and J were created with Ardans
Knowledge Maker tool [16], K with Lotus Notes.

Domain ontologies. We have built several “domain” ontologies: the company
ontology is a general ontology transverse to the whole company, department
ontologies are specific to each department. The company ontology (A Fig. 1) models
common representations shared by all the services, such as the standard structure of
the product, the standard functional analysis of the product, the standard processes.
These standard representations are used by many different applications. The
department ontologies (B; C) model common representations of a department, for
instance: ontology of the Car Design Department (B), ontology of the Logistic
Department (C). These ontologies are independent of any application.

Local ontologies e.g., E, F, G (Fig. 1) include all concepts that can be used to
query the sources. For example, E includes all concepts available to query the source
I, e.g., RechercheParVue. These concepts are associated to class instances of the
tool module D which is imported by E (see below).

Mappings. Mappings modules have been defined to map the domain ontologies
concepts to concepts enabling to query the sources. A so called “tool” mapping
module, e.g., D, H (Fig. 1) models the different types of search that can be achieved
by using a given tool to access a knowledge source. For example, D models the
searches that are possible with the Ardans Knowledge Maker tool, e.g.,
SearchByView or FullTextSearch, to access the knowledge source I. Its main property
is aCommeRecherche (i.e. hasSearchMode) which links domain concepts to
their corresponding tool concepts.

Il
| @ Metadata (AUTO.owl) | 0 OwLClassas | B Properties || @ Individuaiz | = Forms |
SUBCLASS EXPLORER CLASS EDITOR SR
For Project: @ AUTO For Class: © |PorteAR (instance of owlClass) || Inferred Vi

3 1
Asserted Hierarchy L3S CHem O [Annotations
0 Vehicuie - Property I Value [Lang |
¥ @ vehicule_SousEnsemble =1 rdlfs:comment a
& Interieur
1©) OuvrantAR
& ParteAR -
© Porteav
¥ @ vehiculeComposart @ ﬁ Q; & Asserted Conditions
» @ Composantinterieur HECESSARY & SUFFICIENT
» @ ComposamtouvrantAR IE) 3 aPourComposant ChariotPorteAR]
v ®c riPorteAR IE) 3 aPourComposant CharnierePorteAR
e €} 3 aPourComposant CommandePorteAR
® CrarctPoteAR 1) 3 aPourComposant JointsPorteARCaisse =
@ charnierePorteAR IE) 3 aPourComposant EtanchettePorteAR
@ CommandePorteAR .| ||€) 3 aPourComposant ArretPorte AR
@ EtanchetePorteR % | |E) 3 aPourComposant StructurePorteAR
HECESSARY
JointsPorte ARC:
: orisroeRREaEse |® Vehicue_SousEnsenble =]
LeveVirePorteAR
@ WanosuvrePorteAR
@ StructurePorteAR 1
@ VitrehlobiePorteAR L e Bae @D bisjoints
» @ ComposartPortsAY g g““ﬁAr:AR
[uvan
@ VehiculePisce | ||© rteriour i

Fig. 2: Company ontology! (A)

oY [rrorenrvonowsen [
Fof Project: @ Ardsnefld For Project: @ ArdansAKM
Ansertad Fh'r.-r_al-rhy ﬁ w ﬁ | m w m]"I
' ot Thing | |} o Object properties o 8 L]

¥ B RecherchePar Ardanve AKM | Bt]

@ T I (I estRecherchele — alommeRecherche

i N A e L e W aCommeRecherche - estiecherchele

@ RecherchePae TypeDaliodeis |

@ RecherchePar sleurDeListe

@ Recheschefae\us |

B RecherchePleinTexte

Fig. 3: Tool module (D)

The class RechercheParTitreFiche (SearchByFormTitle) has a property
estRecherchede (whose inverse is aRecherchede — hasSearchMode)

! The OWL ontologies were developed using the Protégé OWL editor [14]

3. Mapping process

For example, assume that a user is looking for knowledge about Cost (in French
“Couts”) for a Front Door Structure (Structure Porte AV).

How does the mapping work for “Front Door Structure”?
The skeleton of a car is a structure made of steel. Components of the car, e.g.; glass,
seals, seats, are assembled on the structure. The class Front Door Structure
represents the steel component of the door. The Company ontology A (Fig.2)
contains.
= Vehicle
. Engine
- Rear Door Component

o Rear Door Glass

o Rear Door Seals

o Rear Door Structure

[e) e
- Front Door Component

o Front Door Glass

o Front Door Seals

O Front Door Structure

Logistics department deals only with Structure components and Assembly
Components. Structure components correspond to the structure of the car which is
first stamped, then painted, and assembled with Assembly components issued from
external providers. Logistics department ontology (C) contains a representation of a
car from the logistic specific point of view:
= Vehicle

- Structure component

u Assembly component
Design department for Opening has also its own representation of a vehicle (B):
. Openings

- Front Door or Rear Door

. Openings Glass

. Openings Seals...

Therefore, a query about Front Door Structure has to be mapped to
Structure component from a Logistic point of view, and to Front Door
or Rear Door, from the Opening Design point of view. This is achieved by
asserting Necessary and Sufficient conditions using existential restrictions in the
ontology C, which imports the ontology A.

SUBCLASS EXPLORER &) CLASSEDITOR LEL AP
i

For Project: @ Fabrlog or Class: © h e | Onstance of ot Class) C :hmdm;

Aawerted 16srarchy - o L 1 o # ® X B Trigles |
[owt Thing [l] Propesty I Vit I Trpe I
| P Ve] ot e alert Ul 5 (IPSA Pour Compmaant PRA SructhreCumants. . . owiClas
| iy ubCissr Censstusnt % ewiCisy
b @ pyverious_SousEnsemtte | e * ¢ s
| S opyVehisuslomposant |
B Py VehicusPnce
b @ ascher |
v @ Consthurevenicus ¢ LR] Asserted Conditiens |
| 7 B Conmtusre | WECESSART & BUFF
| ®c ‘ i@ (3PSA PouComponant PSA SLctursOWNTaNtAR) Ui (3 PSAPorComposant PSA StucturePortsaR) L (3 PSA wPou Col Tl
| MECE
| O ConsttartSuctre i. e
| B Veticule el 1]

Fig. 4: Logistics Department ontology (C)

Running an OWL reasoner, e.g., RACER [5], PELLET [6], FACT++ [7],
automatically computes the inferred hierarchies, for example, the following
hierarchies are inferred for the Logistic and the Opening design ontology respectively:

= Vehicle
- Structure component
o Rear Door Structure
o Front Door Structure
" Assembly component

- Openings
- Front Door or Rear Door
o Rear Door Structure
o Front Door Structure

" QOpenings Glass, etc.

Im, SUBCLASS EXPLORER
For Project: @ FabrLog For Project @ FabrLog
Asserted Hierarchy !9' lf’ % Inferred Hierarchy .“
> CPY:Vehicule_SousEnsemble - = uwiiThmg
v 0 cPY:VehiculeComposant O Atelier
B CPy:Composantinterieur ¥ @ ConstituantVehicule
> CPY:ComposantOuvrantAR [v @ Constituart
¥ (0 cPy:.ComposantPorteAR © Constituanttdonte
CPY:LevreVitrePorte AR v © ConsttuantStructure
cPY:ManoeuvrePorteAR Z CPY:StructurePorteAR
CPY:StructurePorte AR CPY StructurePorte AV
CPY:VitreMobilePorte AR @ Vehicule
¥) cpy:ComposantPorte AV > O iCPy Activite

Fig. 5: Asserted and inferred hierarchy of the Logistic Department ontology

Hence, the system knows that Front Door Structure is a subclass of
Structure component in ontology C and a subclass of Front Door or Rear
Door in ontology B, and the system has to generate a query for both sources I and K.

For example, let be a query that needs to access the knowledge source I dedicated to
theknow-how about Logistics. Usually, to get such knowledge about “Structure

component”, a user has to clic on a “View” (a kind of category used to index and
serach the knowledge stored in the application) called “Structure”. Therefore, on
order to simulate the same, our integration system has to map the class “Structure
component” of ontology C to a query corresponding to a clic on the View “Structure”
of the source I. The class StructureComponent of the ontology C contains a
single instance StructureComponent_1. Ontology E contains an instance
SearchByViewStructure_1 of the class SearchByView belonging to module
D. In ontology E, the instance searchByViewStructure_1 is related by the
property isSearchModeOf to the instance StructureComponent_1 of
ontology C. Instance searchByViewStructure_1 of ontology E has properties
like AKM: identifiant (ID) which allows to access the source I content.

M Properties | @ ndividuals | = Forms |

| @ Metadata dcaret owl) | Owlclasses
LAS : ANCE BROWSER

\ INDIVIDUAL EDITOR

SearchByView M
For Project: @ lcarel lass: AKMRecherchePariue For Individual: 4 |RechercheParyue_
of module D for
Class Hierarchy AKM Tool Inferred o % @ % [
owkThing Asserted Instances - ¥ e XSG Property [
¥) AKMRecherchgPar Ardans AN @ RechercheRarvue_Structure I AfiestRechercheDe *
AKMRechgrcheParTitreFiche =] AKNMidertifiant 123
AKMRechprcheParTypeDeModele (= AN libelle Str
AKNMRecHercheParvaleurDeListe
AlM-RecherchePar'ue (1) Instance
AKNMRecherchePleinTexte (1) .
> @ L Atelier SearchByVlng_tructureJ
¥) FL:ConstituantVehicule of E mapping instance I
¥ & FLConsttuant StructureComponent_1 of C| ||| frentiiant
FL: Constiuantidorte [12335
FL-ConstituantStructure (1)
FL:Vehicule AKM:libelle
P FL:MetierLogistique | Structure
> FL:TypeDeCaracteristiue Properties of the D ‘}
: :;tlsa“:l::mme Instance to query # ConstituaniStructure_1
CPY:CadePrajet Source |
| 2 CPY.Connaissance
> CPY:Exigences
CPY:NiveauDeConfidertialte (AL
e i Class StructureCompon.ent
CPY Vehicule of the Ontology C and its
B CPY:Vehicule_SousEnsemble Instance
B CPY:VehiculeComposant | I ™7
LoV ohie oD L 1

Fig. 6: Global ontology importing all the ontologies and modules

How does the mapping work for “Costs”?

“Cost” is an unknown concept of both knowledge sources. It is defined in the
Company ontology as a kind of Requirement (in French “Exigence”). The mapping
has to find out a way to query the Logistic knowledge source with the “Cost” concept.
This point was solved using the local ontology defined for the Logistics source. The
concept Cost is linked to an instance of the FullText Search class. This instance
has a property related to the Full Text Search query. In our case: Chiffrage or
Colit Logistique (logistic cost). So the query Cost is translated for the
Logistics source into a full text search with the query “Chiffrage OR cofit
logistique”. This illustrates that when a local ontology is designed for a
Knowledge source, the knowledge engineer has to identify implicit concepts, and to
define how to translate them into the relevant Full text queries.

2.3 Query processing

Portail de recherche
Domain
Actvits Cieeiar 3 __J| Servlet ,|| Reasoner jes. Ontologie
Systéme Logistique v Java 3 KAON2 aRpaBs) F Dntologie
Fonction £ «C» o
Produit : Ouvrant «E»
Exigences 2 “@5
Site ~| Choix b
Classes
Requéte : Concevoir Logistique 4
K AKM ICA¥
Jsp 6 Service Web || Service
Web 5 service || Web
Serveur Web

K AKM CLI

Web| || Service
servic(|| Web

Fig. 7: Technical architecture

1 The user selects relevant domain classes (search criteria) through the search
portal Fig. 7 (in French “Portail de recherché”).

2 The query is transmitted to the processing server (Fig. 7)

3 The processing server uses domain ontologies to identify the one or the several
knowledge bases concerned by the search criteria

4 Servlet JAVA extracts query parameters and create an instance of the processing
class which generates SPARQL [13] queries.

5 SPARQL queries are processed through KAON2 reasoner [15] and provides
relevant Knowledge bases with their search criteria

6 Web services are processed on the relevant source of knowledges

7 Results are gathered in an HTML page and sent to the user (lower left corner Fig.
7). This HTML page is made of the initial question criteria with the
corresponding results.Characteristics (title, URL) of relevant knowledge elements

Example 1 of query:

Find all search modes for RearOpening, and for each one give its identiant and the
knowledge source to be accessed

SELECT 2z ?2d ?s

WHERE {RearOpening_1 a:hasSearchMode ?z ?z a:identifier ?2d <2z
a:hasSource ?s } ORDER BY ?z

Example 2 of a more complex query:

SELECT ?x ?y ?z ?d ?c ?e ?s WHERE

{RearOpening a:estComposantDe ?x . /Select classes whose
RearOpening 1is component of/

?x a:aPourComposant ?y . /For each select its components/

?y a:aPourRecherche ?z . /Retrieve corresponding search concept/
?z a:libelle ?c . /Retrieve corresponding label/

?z a:code ?d . /Retrieve corresponding identifier/

?z a:typeRecherche ?e . /Retrieve corresponding search mode/

?z a:aPourApplication ?s }/Retrieve corresponding knowledge
source/
ORDER BY ?z

Liste des critéres de recherche

Localization - Baze de connaissange | hlade de vecherche | Identifiant de recherche | Libelle de Uitesn de recherche
Bittpeliowd cpy com' CP Y cnmon¥ELE X 2333 Porte AV et AR

httpfovd epy comtCE Y CommentELE T EFT 4 GV

Bt e epy comfCF Y CommenWELE T EFT -4 BV

b el epy com/CF Y Commen®E B _T v 515 Maetage

Hittpfowl cpy. comfCF T Commen®ELE _I v 514 Struckure

bittpowl cpy.com/CP Y Commen®EE_K X 22333 Porie AV et AR

Liste des informations extraites des bases de connaissances

EEB_I 1257, 1, Donensonnement des stockes emboulissags
L 1252, 1, Chiffrage de pidcer en emballage durable Grog Vedame
EB_I 745, 1, La sdeunsation des stocks

Fig. 8: Answer to example 2 query and information retrieved in sources I, K

Figure 10 (top) shows the results of the query example 2: knowledge source, search
mode, identifier, label of search. The answer is derived from the following facts of the
Abox: RearOpening isComponentOf Opening (asserted in ontology A);
Opening hasComponent Porte AV et AR defined as labels (in ontology
B); RearOpening isComponentOf Constituant (in ontology C);
Constituant hasComponent Structure and Montage defined as labels
(in ontology C). Figure 10 (bottom) shows the list of retrieved information next
extracted from the mentionned knowledge sources, thanks to the above results.

3. Choices, success and limits

The mock-up architecture that has been defined is quite classical for heterogeneous
information integration, and partly similar to the architecture presented in [8]. A main
difference is that the sources store non structured information that can be accessed
only by specific tools, e.g., Ardans Knowledge Maker, and not structured data of
databases. We successfully designed and implemented a mock-up using OWL [1] and
KAON2 [15] for knowledge sources integration in a large automotive company.
Several work-around were needed. The adopted solutions are provisory and
improvements may be considered for any future development.

3.1 Query formulation

The user is guided by menus issued from the domain ontologies. Other solutions are
possible: to allow natural language questions interpreted thanks to domain ontologies;
to propose a refinement of the query driven by real data of the applications and not
only by the domain ontologies.

3.2 Languages

SPARQL query language. Several query languages do exist: SPARQL [13],
OWLQL, NRQL etc. We selected SPARQL. KAON?2 provides for research purpose a
Java library to trigger SPARQL queries. However, SPARQL has a strong limitation,
reasoning is possible only with instances. Because of this limitation we were obliged
to define “prototypical” instances instead of using classes in the local ontologies. For
future development, query language extensions allowing reasoning directly with
classes would be useful.

OWL 1.1 [11]. We used OWL DL as the ontology language so as to use KAON2.
Obviously, using OWL 1.1 qualified cardinalities (and other extensions) will be
useful, allowing for example to express that a car has exactly two rear doors.

3.3 Mapping representation

We used OWL expressiveness to define the mappings by subclass and equivalence
axioms. However, it may be useful to specify more complex mappings. As first
evaluations using Hoolet [12] showed rather satisfying performance with the rule
language extension SWRL, SWRL may be a good candidate for implementing more
powerful translators. We had initially considered to implement the mappings in
another language, e.g., XSL, but this option was cancelled. We prefer a coherent
framework where modeling is expressed using a single language that allows for
representing an ontology enriched by rules, e.g., SWRL [10] or a DL-safe rule
extension of OWL [4]. As far as we know, without restrictions imposed on the form
of queries and mappings, query rewriting is undecidable. A more careful analysis of
the requirements is needed in the future to know what should be preferred, SWRL
undecidable extension or DL-safe rules as supported by KAON?2.

4. Conclusion

A friendly framework allowing to query distributed knowledge is an important needs.
This mock-up has successfully demonstrated the usefulness of OWL and KAON2
reasoner for knowledge integration in a large automotive company. Ontologies are
crucial components to access knowledge spread over multiple knowledge sources. But
the use of OWL and KAON?2 for this purpose in industrial companies is still an
emergent technique. We mainly relied on the online documentation [2; 9]. Though we
have more than twenty years of practice in knowledge engineering, it turned out that it
was not obvious to understand and use OWL and protypical tools such as KAON2,
from the presently available information without some support. This mock-up would
never have existed without the assistance of an “OWL specialist”. In conclusion,
OWL ontology seems a promising technique. But its success in industrial companies
will critically depend on the industrialization and standardization of the languages and
tools (editors and reasoners), coupled with the availability of reliable documentation,
knowledge engineering methodology, training, and tutorials.

References

10

11

Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and RDF to
OWL: The making of a Web Ontology Language. J. of Web Semantics, 1(1):7-26, 2003
OWL (2004), OWL Web Ontology Language : Overview, http:/www.w3.org/tr/owl-
features/.

OWL 1.1 (2006). OWL 1.1 Web Ontology Language Syntax: http://www-
db.research.belllabs.com/user/pfps/owl/syntax.html.

Motik, B., U. Sattler, et R. Studer (2004). Query answering for OWL DL with rules. ISWC
2004, LNCS 3298 Springer. Publishers, Inc.

Volker Haarslev and Ralf Moller. RACER system description. In Proc. of the Int.joint
Conf. on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes in Artificial
Intelligence, pages 701-705. Springer, 2001.

Evren Sirin and Bijan Parsia. Pellet: An OWL DL reasoner. In Proc. of the 2004
Description Logic Workshop (DL 2004), 2004.

Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: System
description. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006),
volume 4130 of Lecture Notes in Artificial Intelligence, pages 292—-297. Springer, 2006.
Haase, P., Hitzler, P., Krotzsch, M., Angele, J., Studer, R. : Practical Reasoning with
OWL and DL-Safe Rules. Half-day tutorial at the 3rd European Semantic Web
Conference, ESWC 2006. http://km.aifb.uni-karlsruhe.de/ws/prowl2006/

Matthew Horridge, Holger Knublauch, Alan Rector, Robert Stevens, Chris Wroe Matthew
Horridge A Practical Guide To Building OWL Ontologies Using The Prot’eg’e-OWL
Plugin and CO-ODE Tools Edition 1.0, 2004.

Ian Horrocks, Peter F. Patel-Schneider, Sean Bechhofer, Dmitry Tsarkov. OWL
Rules: A Proposal and Prototype Implementation. Journal of Web Semantics,
Vol. 3, No. 1, pp 23-40, 2005.

OWL 1.1 Peter Patel-Schneider and Ian Horrocks. OWL 1.1 Web Ontology Language
overview. W3C Member Submission, 19 December 2006. Available at http:
/Iwww.w3.org/Submission/owl]l 1-overview/

Hoolet: http://owl.man.ac.uk/hoolet/

SPARQL: http:/www.w3.org/TR/rdf-sparql-query/

Protégé OWL.: http://protege.stanford.edu.

KAON?2: http://kaon2.semanticweb.org/

Pierre Mariot, Christine Golbreich, Jean-Pierre Cotton, Frangois Vexler, Alain Berger
Méthode, Modéle et Outil Ardans de capitalisation des connaissances, 2007, 7¢mes
journées francophones Extraction et Gestion des Connaissances, Namur, Belgique
http://www.ardans.com/

10

