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Abstract. It is essential to be able to incorporate representation of
quantities into models of many domains. Many ontologies attempt to
axiomatize a theory of quantities in OWL so that they may incorporate
quantities in their ontologies. However, OWL based axiomatizations suf-
fer from a number of problems including the impossibility of representing
(and computing) conversions in OWL 1. While there are proposed ex-
tensions to OWL that would allow for linear equations (and thus, in
principle, handle a large class of conversions), we argue that OWL based
axiomatizations are, nevertheless, suboptimal from several perspectives.
Instead, we propose a new datatype system for handling quantities and
show that it is superior from both a modeling and an implementation
point of view.

1 Introduction

It is essential to be able to incorporate quantities into models of many domains.
The Health Care and Life Science (HCLS) domains are, perhaps, the most in-
tensive area of ontology development and have been for decades. These domains
are shot through with a need to represent physical quantities. Many HCLS (and
other) ontologies attempt to axiomatize a theory of quantities in OWL1 so that
they may incorporate quantities in their modeling. Axiomatizing in OWL has
some advantages:

1. No changes are required to OWL itself or to the toolchain to use such quan-
tity representations.

2. The theory is transparent and inspectable.
3. The theory is extensible and customizable by OWL modelers.

However, there are considerable disadvantages:

1. The theory is non-standard, thus tools have a much harder time being sen-
sitive to quantities (e.g., in order to display measurements using different
units). While this can, in part, be overcome by standardizing on a partic-
ular ontology, the fact that it is in OWL makes it difficult to optimize for,
especially in the presence of customizations (intended or inadvertent).

1 We use OWL primarily to mean OWL 2 and somewhat indistinguishably with OWL
1 and, in all cases, the description logic (DL) variant.



2. The axiomatization of quantities contaminates the axiomatization of the
domain. The most obvious issue is how it affects reasoner performance, but
it also can interfere with, for example, the modularization of the ontology.
(Since quantities are cross-cutting, they can force parts of the ontology to
be interdependent, logically speaking, that otherwise would not be).

3. The axiomatization is rather difficult to produce and ensure correctness.
(Consider all the problems with three distinct international standards de-
scribed in [12].) Furthermore, some aspects may not be possible to handle
in OWL 1 (unit conversions) or even OWL 2 (unit comparability).

4. Axiomizations of quantities in OWL are typically difficult to use, even from
a simple syntactic perspective.

Consider a very simple example which highlights some of these issues (adapted
from [10], example 1, and used to illustrate the utility of n-ary data predicates):

Example 1 (Miles and Kilometers). Suppose we are trying to reconcile two ge-
ography data sets: one where river lengths are described in kilometers and a
second where they are described in miles. We have data on the length of the
Yangtze river as follows:

ClassAssertion(Yangtze River)
PropertyAssertion(length-in-miles Yangtze "3937.5"ˆˆxsd:decimal)
PropertyAssertion(length-in-kilometers Yangtze "6300"ˆˆxsd:decimal)

We would prefer these to be consistent, and we would prefer assertions like

ClassAssertion(Yangtze River)
PropertyAssertion(length-in-miles Yangtze "6300"ˆˆxsd:decimal)
PropertyAssertion(length-in-kilometers Yangtze "6300"ˆˆxsd:decimal)

to be inconsistent. To get this effect, we need to add a constraint on the in-
stances of River such that the value of length-in-miles = 1.6∗length-in-kilometers:

SubClassOf(River
AllValuesFrom(length-in-miles length-in-kilometers

LinearExpression(Arguments(m k) eq m times(1.6 k))))

This “simple” example, while achieving the key functionality of conversion,
illustrates wretched usability. While, in the current proposal for linear equa-
tions2, we could name the conversion and thus reuse it, the fact of having to
incorporate the unit name into the property leads to an absurd proliferation of
properties. Not only do we need distinct properties for each unit, but for each
aspect of the object which has a length (consider, maximum-depth-in-miles
and maximum-depth-in-kilometers). (Imagine the chaos if we include derived
units!) It is clear that we need a careful design in order to have usable quantities
in OWL.

In general, there are two basic aims for an OWL ontology of quantities: to
explore the representation of quantities (quantities as domain) and to use a
2 http://www.w3.org/2007/OWL/wiki/Data_Range_Extension:_Linear_Equations



representation of quantities in representations of other domains. The exemplar
of the first aim is [5] (but see also [11] which is discuss in some detail in section
2.1), which axiomatizes a very nice theory of physical quantities in first order
logic (specifically, in KIF). In this paper, we are concerned with the second aim.
We argue that the overall best way to incorporate quantities into OWL is by a
basic extension to the language – in particular, quantities should be represented
by an extension to the datatype system. This choice, while hardly dominant,
is not unheard of; several programming languages (e.g., Frink3 or Fortress4)
incorporate quantities into the language itself. The idea of using a language’s
type system to enforce dimensional consistency recurs often, e.g., in [2–4, 6, 7].

In this paper we focus on physical quantities such as length, mass, and time,
though our approach can be applied to other quantities without difficulty.5

2 Background

First we introduce some terminology, loosely following [2]. First we have distinct
dimensions, which are used to type quantities. A dimension is either a base di-
mension or a derived dimension. Base dimensions (given a certain system) are
primitive and disjoint. Derived dimensions are combinations of base dimensions
using multiplication and division operations. Length and Time are examples of
base dimensions in SI. Mass × Temperature and Length ÷ Time are examples
of derived dimensions.6 A unit is a specially designated quantity, as such asso-
ciated with a particular dimension, which is defined specifically for use in the
description of other quantities. For example, [1] defines the unit Meter in the
Length dimension. Finally, the focus of this paper, a quantity, is a unit paired
with a magnitude. For example, 3.7 Seconds is a quantity.

This conceptualization is constructed such that all and only quantities with
the same dimension are comparable. More specifically, for any two units of the
same dimension, a scaling relationship exists to map quantities from the first
unit to the second. For example,

m lightseconds = m× 299792458 meters

3 http://futureboy.homeip.net/frinkdocs/
Frink has inspiring usability. It exemplifies the advantages of building quantities
directly into the language.

4 http://research.sun.com/projects/plrg/Publications/fortress1.0beta.pdf,
although dimensions have been removed from the final 1.0 spec. This was to
accurately reflect the current implementation, not to express a design decision.

5 That is, aside from difficulties brought in by the quantity itself. Money is a good
example since exchange rates alone are ever fluctuating and quite complex even
before one tries to account for inflation. Frink has a interesting support of money
which includes working with historical buying power.

6 There is flexibility in which dimensions you chose as base and which are derived. For
example, you could chose speed and either time or length as base and have length
or time (respectively) be derived.



is a unit conversion in the Length dimension. By converting quantities to the
same unit, their magnitudes are directly comparable. Given such relationships
among quantities within a dimension, the ability to check the equality of dimen-
sions, the simplest kind of dimensional analysis, becomes particularly relevant.
Dimensional analysis is an area to which considerable study has been devoted
and computationally efficient algorithms have been defined, as in [4].

2.1 Axiomatizations in OWL

While we did not do an extensive survey, a simple perusal of the first page of
a Swoogle search7 for “unit” revealed five distinct axiomatizations of units. There
were individuals (resolutionUnit, time-measure-second), classes (Unit-Of-Measure,
Time-Measure, measuring-unit, speed-unit), and properties (has-unit-of-measure,
Unit, angularMeasure). Some obviously were meant to work together (mass (a
property) and kilogram (a class)).

Clearly this is a horrid mess. Most of the examined ontologies were in RDFS,
thus could not, in principle, support dimensional disjointness. Furthermore, since
there are no equations included, there is no unit conversion either. Some of the
axiomatizations were intentionally trivial, e.g., the range of a property Unit was
xsd:string. In others, however, there are enough separate terms arranged in
fairly complex relations to indicate that the authors did want some joy from all
that.

This shows that some sort of standard way of handling quantities would
be very helpful if only to prevent repeated, flawed effort. But if we examine
an ontology explicitly proposed to provide standard quantity handling in OWL,
UnitDim[11], we find a number of problems.8 First, we note that it is, necessarily,
very heavyweight with 302 classes, 500 individuals, 476 subclass axioms, 880
data property assertions, and so on. It uses nominals, inverses, and functional
properties (specifically, it is in ALCOIF(D)). It is also inconsistent (due to, we
believe, a datatype error, though our attempted fix did not resolve matters). It
is rather daunting to have to import such an ontology that may well be larger
and more complex than one’s own! There is a wealth of detail including an
interesting attempt to model derived dimensions by a series of data properties.
It seems reasonable to expect that the modeling would trigger inconsistencies if
an individual quantity were made an instance of two dimensionally incompatible
quantities. But consider a simple example,

Example 2 (UnitDim definition of Frequency). Frequency is defined to be a
quantity which has two possible units, 1/second and hertz and as having a
certain dimension:

SubClassOf(Frequency
IntersectionOf(

7 http://swoogle.umbc.edu/index.php?service=search&queryType=search_swd_
ontology&searchString=unit&searchStart=1

8 We retrieved a copy from http://www.atoapps.nl/ProjectSite2/data/documents/
217618013-20041216155627/UnitDim.owl.



Quantity
UnionOf(

HasValue(possible_unit reciprocal_second)
HasValue(possible_unit hertz))

HasValue(SIdimension time_to_the_power_-1_SI_dimension)))

The dimension is connected to a dimension vector by a series of (functional)
data properties (zero valued assertions removed for space reasons, but are essen-
tial in the ontology):

ClassAssertion(time_to_the_power_-1_SI_dimension SI_dimension)
PropertyAssertion(time_exponent

time_to_the_power_-1_SI_dimension "-1"ˆˆxsd:int)

We see that quantities can have multiple sorts of units (though it is unclear to
us that the right units are distinct; for example, it seems possible that hertz and
meters could be consistently equal), but the relationship between these units
cannot be modeled effectively. Multiplication and division are represented as
objects, thus are not computed. Thus, it seems possible for a reasoner to find
that 1 centimeter is equal to 1 meter. If such an expression is not detectably
inconsistent, then the unit representation loses much of its value. Indeed, from a
practical perspective, it would be better to manually normalize all unit expres-
sions into a directly comparable form, though the naturalness of the modeling
would be lost.

Clearly there is a lot of representational redundancy explicit in UnitDim. For
example, not only is the dimension vector explicit in the ontology, but the name
of the corresponding individual is a long franken-name that looks compositional
and meaningful, but, to the tools, it is not. Furthermore, the effective repre-
sentation (the vector) is a rather strange representation from the user point of
view. We typically find such representations as the internal data structure of a
program, not as a notation for people.

We have examined two general strategies for representing quantities in OWL:
profilerating properties and building structured objects. Unfortunately, each has
a key strength that the other lacks. Proliferating properties allows us to use
feasible equation systems for unit conversion and, to some extent, in dimenional
analysis of equations. (For example, it would be nice if we could detect that a
class with a property constrained by an equation was a subclass of a class that
has a property constrained to be < 2cm.) However, the modeling is in principle
unworkable (since we would have to generate the cross product of our properites
and the units we want to use with them). On the other hand, we can at least
imagine a structured object representation (such as in UnitDim) that did not
have these issues (though would still be unwieldy at best). But these depend
on chains of properties to relate objects to measurements. That is, instead of
writing that a person’s height is 2 meters (where height is represented as a data
property) we have to make height an object property with a range Length which
has a property like hasUnit and another measuredValue. But now there is no
hope of using these values in equation systems for the forseeable future, since the
known implementable equation systems require that all inputs to the equation be



taken from direct data properties. This is a serious compromise of the usability
of OWL based quantity systems.

What we would like from quantity support in OWL is the ability to work sim-
ply and naturally with quantities described using different unit systems wherein
comparison, range restrictions, etc. are unit insensitive (i.e., the system converts
behind the scenes instead of required manual casting), dimensional analysis is
performed (so comparison of lengths with times causes inconsistency), and we
have the ability to easily create arbitrary derived units whether directly or im-
plicitly via some equation over data properties. For example, we would like (given
that height is functional):

PropertyAssertion(height sheevah "2 meters"ˆˆowl:quantity)
PropertyAssertion(height sheevah "200cm"ˆˆowl:quantity)

to be consistent while:

PropertyAssertion(height sheevah "2m"ˆˆowl:quantity)
PropertyAssertion(height sheevah "2centimeters"ˆˆowl:quantity)

to be inconsistent. Similarly,

EquivalentClasses(Tall
SomeValuesFrom(height

DatatypeRestriction(xsd:integer minExclusive "6 feet"ˆˆowl:quantity)))

Should have sheevah as an inferred instance. We should get disjoint classes if
they have properties which are dimensionally inconsistent, subsumptions when
they are dimensional consistent and the ranges are appropriately related, and
so on. It should be very hard to mess things up and the tools should be able to
give back a lot of information when we do mess things up.

3 Datatype approaches

All these considerations point to adding quantities as a new sort of datatype to
OWL. Datatypes represent domains for which there is a worked out theory such
that it makes sense for the system to be sensitive to it. For example, even if
it were possible, it is very undesirable to require people to axiomatize a theory
of the integers in order to model with integers. Similarly, it is pretty clear that
quantities have a worked out theory that would benefit from special syntactic
and semantic support. A new datatype would allow us to introduce very nice
syntax and to enforce all our the semantic desiderata. The main price is that,
without rather more work to define a quantity description system, our set of
base units and unit names are fixed.

4 Implementation

In this section we present two alternative approaches to adding support for quan-
tities, as a concrete domain, to existing OWL applications. The first approach



is implemented by translation to plain OWL 2 thus is compatible with all OWL
2 reasoners. The second approach describes modification to an existing OWL 2
reasoner to directly support quantities.

We introduce two elements of syntax as extensions to the OWL structural
syntax defined in [9]. This syntactic extension is introduced only for purposes of
exposition and demonstration, final syntax choices have not been made. First,
for the remainder of the document we will use owl:quantity as the datatype
of quantities being represented as literals. We adopt the lexical form defined
for the Unified Code for Units of Measure (UCUM)9[12]. Second, we introduce
quantity:dimension as a facet on the quantity datatype used to constrain the
value space to a single dimension. Facet values are unit atoms, also defined by
UCUM. Examples in the next section illustrate the intended use of this syntax.

4.1 External

The translation to plain OWL 2 requires two maps. Φ(·) is a map from dimension
to a class. Ω(·) is a map from data property to object property. Each map begins
empty. During algorithm execution, if Φ(·) is undefined for a dimension, it is
defined with a mapping to a fresh class. Similarly, if Ω(·) is undefined for a data
property, it is defined with a mapping to a fresh object property. We present
the algorithm in two parts. First we present the translation of ABox facts, then
we describe the translation of TBox concept descriptions using data ranges. For
each, an illustrative example is included. For implementation we must choose a
canonical set of base units to which all quantities can be normalized. We use the
notation µ(q) to refer to the magnitude of quantity q, when normalized to the
base units of our implementation.

The fact translation part of the algorithm begins by iterating over all data
property assertions in which the literal is typed as an owl:quantity. For each
such assertion, we’ll refer to the subject individual as s, data property as p,
quantity literal as q, and the dimension of the quantity as δ(q). To complete the
translation, the axiom is retracted from the ontology and three facts are added.
The first is a class assertion between a fresh individual i and class Φ(δ(q)). The
second is an object property assertion from s to i using the object property Ω(p).
The third is a data property assertion relating i and µ(q), using the special func-
tional data property quantity:magnitude. The following example demonstrates
the translation of a single quantity data property assertion.

Example 3 (Converting a Quantity Fact).
The fact that follows:

PropertyAssertion( a:height a:JohnDoe "6.0 ft"ˆˆowl:quantity )

is replaced with the following set of axioms, whereΩ(a : height) = mint : height
and Φ(ft) = mint : DimLength :
9 http://www.regenstrief.org/medinformatics/ucum



PropertyAssertion( mint:height a:JohnDoe _:d1 )
ClassAssertion( mint:DimLength _:d1 )
PropertyAssertion( quantity:magnitude _:d1 "1.8288"ˆˆowl:real )

Informally, the quantity dimension is captured using an object representation
and the magnitude is mapped onto the real number line after conversion into
the base unit (in this example, meters is the base unit for the length dimension).

Quantities may appear in concept descriptions which include value restric-
tions on datatype properties. We proceed by considering concept descriptions
which include a data range defined as a datatype restriction on owl:units. For
each such description, we’ll refer to the data property as p. The concept descrip-
tion is modified as follows. If the quantity:dimension facet is present, with
value d, it is removed and a restriction is added constraining fillers of the ob-
ject property Ω(p) to class Φ(d). Each range constraining facet present (e.g.,
xsd:minInclusive) is removed and a restriction is added constraining fillers of
the object property Ω(p) to individuals satisfying a corresponding range facet
on the quantity:magnitude data property, with the facet values base unit nor-
malized. The following example demonstrates translation of a single concept
description. We have built a prototype implementation in XSLT.

Example 4 (Converting a Quantity Data Range).
The concept description that follows:

AllValuesFrom( a:height
DatatypeRestriction( owl:quantity quantity:dimension "m"

xsd:minInclusive "1.65m"ˆˆowl:quantity
xsd:maxInclusive "1.8m"ˆˆowl:quantity ))

is replaced with the following concept expression, reusing Ω(·) and Φ(·) defini-
tions from Example 3:

AllValuesFrom( mint:height
IntersectionOf ( mint:DimLength

SomeValuesFrom( quantity:magnitude
xsd:minInclusive "1.65"ˆˆowl:real
xsd:maxInclusive "1.8"ˆˆowl:real ) )

The translation algorithm for other quantity data ranges is straightforward.

4.2 Native

We describe the direct implementation in an existing OWL DL reasoner more
succinctly. We begin by assuming a datatype implementation similar to the
approach in [8]. Implementation thus requires extending the datatype map to
include the datatype owl:quantity. The value space for this datatype can be
represented internally as a two-tuple consisting of a dimension (a discrete infinite
space) and base unit normalized magnitude (the real number line). The reasoner



thus must include facilities for dimensional analysis, perhaps based on [4], and
base unit normalization. Given these facilities, satisfying the requirements of a
datatype handler for owl:quantity is straightforward as one can proceed by ex-
tending the datatype handler for owl:real defined in [8] to included dimensional
analysis in containment and equality considerations.

5 Syntax and Other Usability Considerations

We stress that, thus far, we have focused entirely on supporting modeling with
quantities and have deliberately neglected acquisition and presentation issues.
We strongly believe that range axioms and restrictions should not be used to
constrain the form of an input. That is, we do not think that it makes sense to
require that a property’s range is some unit, such as centimeters, rather than
that it is of some dimension, such as length. For convenience, it is reasonable
to allow a range restriction to centimeters to be sugar for a restriction to length
(after all, we want to be able to say meters per second squared, not length
per time squared though the latter should be allowed and be presented upon
demand), but this should not force an inconsistency if an assertion uses meters
instead. A length is a length regardless of the units used to describe it.

In other words, while we always give lengths in terms of some unit, we should
not thereby force units into the domain. What we describe (via units) are quan-
tities and the same quantity can be described using various units. In this sense,
units are much closer to the logical vocabulary of the language and we should
expect the reasoner to be appropriately indifferent to the choice of unit (just as
it is indifferent between using an existential or a min cardinality of 1).

However, we also believe that input constraints, sensible presentation , and
helpful queries are important. We advocate tools being very flexible on this
matter. For example, it is not difficult to display constants under different com-
prehensive unit systems. It’s also not difficult to display constants using the
appropriate scaling prefix (e.g., centi-, kilo-) for various ranges of numbers. All
this should be configurable. We are designing a set of annotations and configura-
tion that allow ontology authors to indicate this sort of preference in a standard
way. In this manner we hope to pre-empt the overloading of modeling axioms
with such information.

6 Conclusion

The representation of quantities, especially those with widespread unit systems,
should be standardized. Aside from the considerable interoperability issues, it
relieves an unnecessary cognitive load from users: No one should have to decide
how to handle meters in their ontology. No one should have to master large
amounts of detailed knowledge of OWL in order to say that a field is 100 meters
long. Saying such should be syntactically easy and semantically correct.

We believe there is no reasonable substitute for building quantity support
into OWL. While a structured object approach (whether chained or branchy)



can handle a large subset of interesting cases (while remaining extensible) it fails
on ease of use and is not compatible with forseeable equation support in OWL.
To address these issues, we propose an extension of OWL in the form of a new
concrete domain for quantities. We show how to reduce that support to OWL
(with datatype ranges on reals), thus providing a reasoner independent imple-
mentation for datatypes involving units. We observe that native reasoner support
is very straightforward. Finally, our approach is extendable to supporting unit
sensitive equations in OWL.

The main part lacking from our proposal, as it stands, is extensibility. The
translation approach shows that extensibility is not too difficult to support. Of
course, derived units are already in, but we could easily allow new base units for
existing dimensions. Furthermore, as long as new dimensions are relevantly sim-
ilar to existing ones, adding additional dimensions is not difficult either (though
there could be some performance impact). For more unusual dimensions, we
think a revision to implementations is appropriate. Reasoners could have a plug
in architecture for such, if they so desired.

In any case, we think that the utility of just the standard physical quantities
is worth the candle. Hypothetical extensibility should not block actual use.
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