
Use of OWL and SWRL for
Semantic Relational Database Translation

Matthew Fisher, Mike Dean, Greg Joiner

BBN Technologies, 1300 N. 17th Street, Suite 400, Arlington, VA 22209
{mfisher, mdean, gjoiner}@bbn.com

Abstract. General purpose query interfaces to relational databases can expose
vast amounts of content to the Semantic Web. In this paper, we discuss
Automapper, a tool that automatically generates data source and mapping
ontologies using OWL and SWRL. We also describe the use of these
ontologies in our Semantic Distributed Query architecture, an implementation
for mapping RDF queries to disparate data sources, including SQL-compliant
databases, using SPARQL as the query language. This paper covers
Automapper functionality that exploits some of the expressiveness of OWL to
produce more accurate translations. A comparison with related work on
Semantic Web access to relational databases is also provided as well as an
investigation into the use of OWL 1.1.

Keywords: Semantic, Database, Mapping, OWL, SWRL

1 Introduction

A wealth of information resides in relational databases, which are highly
engineered for scalability, transaction management, security and access by
existing applications [1]. Access to this information significantly increases the
utility of the Semantic Web. Dynamic access is preferred, to accommodate high
data volumes and change rates. Custom servlets or other programs can export
high-quality semantic representations, but the development cost is often
prohibitive and can limit reusability. This motivates the development of
application-independent tools that can generate a basic ontology from a database
schema and dynamically produce instance data using that ontology. This method
quickly exposes the data to the Semantic Web, where a variety of tools and
applications are available to support translation, integration, reasoning, and
visualization [2].

The paper presents one such tool, Automapper, and is organized as follows:
Sections 2 and 3 describe both Automapper and the overall architecture in which
Automapper operates. Section 4 discusses the current use of OWL and Section 5
details the current use of SWRL. Section 6 provides a simple application of
Automapper and the Semantic Distributed Query architecture. Section 7 covers
related work. Section 8 explores how the new features in OWL 1.1 can be used to
enhance Automapper. Finally, Section 9 concludes with future directions.

2 Architecture

To understand Automapper's utility, a description of its subsuming architecture is

2

provided. While that is not the focus of this paper, a general understanding is
necessary to appreciate Automapper's role in the system as a whole. As shown in
Figure 1, Automapper is part of a larger system for decomposing a SPARQL
query, expressed using a domain ontology, over multiple data sources and
merging the corresponding data into a single result set [3]. Specifically,
Automapper uses the database schema to create an OWL data source ontology
and mapping instance data (the mapping ontology is discussed in Section 3) to
support two layers of processing: the higher-level Semantic Query
Decomposition component (SQD) and the lower level SPARQL-to-SQL
translation component, also known as a Semantic Bridge for Relational Databases
(SBRD). Each RDBMS has its own Semantic Bridge instantiation that can be
either collocated or hosted remotely. SQD relies on a set of SWRL data source-

to-domain mapping rules and optional domain-to-domain mapping rules to
properly translate inbound queries into data source queries and vice-versa. The
use of a domain ontology allows queries to be independent of any particular data
source. In addition, different communities can each adopt their own domain
ontology while reusing the same data sources. Mapping rules need only cover the
data of interest thereby minimizing integration costs.

SBRD uses both Automapper artifacts to correctly map a SPARQL query
expressed using the data source ontology into SQL SELECT statements. Database
query result sets are mapped back into the data source ontology and returned to
SQD. As a final step, SQD recombines the various result sets, maps the data into
the domain ontology and returns this data to the user. Automapper was developed
in Java and needs to be run only once against a given relational database to
automatically generate both the data source ontology and the mapping data. Using
the method java.sql.Connection.getMetaData(), we are able to mine the necessary
table definitions such as column names, primary keys, foreign keys, remarks and
type declarations to generate the data source ontology. Automapper constructs
these artifacts based on a configuration file, which contains instance data based

Fig. 1. Overview of the Semantic Distributed Query Architecture

3

on a simple configuration ontology. This ontology permits additional primary
and foreign key information, the option to include or exclude comments in the
mapping instance data, the capacity to limit the visibility of specific tables and the
ability to override a declared column datatype with another XML Schema
datatype [4].

3 Utilizing Automapper Mapping Data

While SQD relies on SWRL rules for mapping, SBRD depends on Automapper's
generated mapping data. SBRD employs these mappings for transforming
SPARQL data source queries into SQL queries for data retrieval. Our mapping
ontology, based on the mapping ontology used by D2RQ [5], defines a ClassMap
OWL class whose instances represent each table in a given schema. A table has a
corresponding OWL class in the data source ontology, an owning schema, a
name, a uriPattern and one or more datatype property bridges and object property
bridges. The uriPattern is an OWL datatype property used to identify each row
in a table (instance) with a unique URI by concatenating its table name with the
value of each primary key column in the table. The datatype and object property
bridges correspond to columns containing literal values and foreign keys,
respectively.

4 Use of OWL

The following class descriptions, axioms and restrictions are currently
generated by Automapper:

1. maxCardinality is set to 1 for all nullable columns
2. cardinality is set to 1 for all non-nullable columns
3. All datatype and object properties that represent columns are marked as

FunctionalProperties. To ensure global uniqueness and class
specificity, these properties are given URIs based on concatenating the
table and column names

4. allValuesFrom restrictions reflect the datatype or class associated with
each column

5 Use of SWRL

Automapper generates SWRL rules to identify identical individuals based on their
primary key values. These rules use swrl:SameIndividualAtom
statements to express class-specific inverse functional relationships, including
those involving multiple properties (primary key columns), neither of which is
directly supported by OWL [6]. The inclusion of these rules can reduce the
number of SPARQL variables and statements used by both SQD during the query
decomposition process and Semantic Bridges during translation. The resulting
SQL queries are more concise and, in certain cases, execute in a shorter period of
time.

4

6 Example

Assume a simple OWL domain ontology of personnel information used by a
human resources department. This ontology defines classes Person and Dept and
datatype properties gender, name, code and projectName1. It also defines an
object property, department, used to associate a Person with a Dept. A Dept is
uniquely identified by its code. Below is a fragment represented in Turtle:

:Person a owl:Class;
 rdfs:subClassOf
 [a owl:Restriction ;
 owl:onProperty :name ;
 owl:maxCardinality
 "1"^^xsd:nonNegativeInteger],
 [a owl:Restriction ;
 owl:onProperty :name ;
 owl:allValuesFrom xsd:string],
 [a owl:Restriction ;
 owl:onProperty :department ;
 owl:maxCardinality
 "1"^^xsd:nonNegativeInteger],
 [a owl:Restriction ;
 owl:onProperty :department ;
 owl:allValuesFrom :Dept] .

:Dept a owl:Class;
 rdfs:subClassOf
 [a owl:Restriction ;
 owl:onProperty :code ;
 owl:maxCardinality
 "1"^^xsd:nonNegativeInteger],
 [a owl:Restriction ;
 owl:onProperty :code ;
 owl:allValuesFrom xsd:int] .

A domain model will often incorporate data from multiple databases but not all
terms defined in a data source ontology will map to the domain ontology. For the
sake of brevity, we limit our example to a single database (hresources) that holds
staffing information; Tables 1 and 2 list the contents of the Staffing and
Departments tables, respectively. Note that the Department ID column is only
partially dependent on the primary key (an employee belongs to one department,
independent of a project) and therefore the table is not in second normal form [7].
Unfortunately, such usage is not uncommon in practice and is included here as a
real-world example.

1 The association between Person and a Project could also be appropriately modeled using an

object property.

5

From this schema, Automapper creates the data source ontology and class-
specific inverse functional rules, of which fragments are listed below:

dsont:Hresources.Departments a owl:Class ;
 rdfs:subClassOf
 [a owl:Restriction ;
 owl:onProperty
 dsont:hresources.departments.id ;
 owl:allValuesFrom xsd:decimal],
 [a owl:Restriction ;
 owl:onProperty
 dsont:hresources.departments.id ;
 owl:cardinality
 "1"^^xsd:nonNegativeInteger] .

dsont:Hresources.Staffing a owl:Class ;
 rdfs:subClassOf
 [a owl:Restriction ;
 owl:onProperty
 dsont:hresources.staffing.name ;
 owl:cardinality
 "1"^^xsd:nonNegativeInteger],
 [a owl:Restriction ;
 owl:onProperty
 dsont:hresources.staffing.name ;
 owl:allValuesFrom xsd:string],
 [a owl:Restriction ;
 owl:onProperty
 dsont:hresources.staffing.deptid.Object ;
 owl:cardinality
 "1"^^xsd:nonNegativeInteger] .

dsont:Hresources.DeptsSame a ruleml:Imp ;
 ruleml:body
 ([a swrl:ClassAtom ;

Table 2. Department Table. ID is a primary key.

Table 1. Staffing Table. Name and Project together
form a primary key and Department ID is a foreign key.

6

 swrl:argument1 :A ;
 swrl:classPredicate
 dsont:Hresources.Departments]
 [a swrl:ClassAtom ;
 swrl:argument1 :B ;
 swrl:classPredicate
 dsont:Hresources.Departments]
 [a swrl:DatavaluedPropertyAtom ;
 swrl:argument1 :A ;
 swrl:argument2 :Var0 ;
 swrl:propertyPredicate
 dsont:hresources.departments.id]
 [a swrl:DatavaluedPropertyAtom ;
 swrl:argument1 :B ;
 swrl:argument2 :Var0 ;
 swrl:propertyPredicate
 dsont:hresources.departments.id]) ;
 ruleml:head
 ([a swrl:SameIndividualAtom ;
 swrl:argument1 :A ;
 swrl:argument2 :B]) .

The corresponding mapping data is also generated. Below are two datatype

property bridges, an object property bridge (representing a foreign key) and a
class map all relating to the Departments table:

:HRESOURCES.DEPARTMENTS.ID a
map:DatatypePropertyBridge;
 map:column "ID";
 map:datatype xsd:decimal;
 map:language "en";
 map:property
 dsont:hresources.departments.id .

:HRESOURCES.STAFFING.DEPTID.OBJ a
map:ObjectPropertyBridge;
 map:constraint
 [a map:KeyConstraint;
 map:objectColumnOperand "ID";
 map:operator :EqualsOperator;
 map:subjectColumnOperand "DEPTID"];
 map:objectClassMap
 dsont:Hresources.Departments;
 map:property
 dsont:hresources.staffing.deptid.Object .

:Hresources.Departments a map:ClassMap;
 map:datatypePropertyBridge
 :HRESOURCES.DEPARTMENTS.ID,
 :HRESOURCES.DEPARTMENTS.NAME;
 map:table "DEPARTMENTS";

7

 map:type dsont:Hresources.Departments;
 map:uriPattern
 "http://example.org/2007/08/ds-ont#
 Hresources.Departments@@ID@@" .

In the final step, we create SWRL rules to map between the data source and

domain ontologies to enable SPARQL query decomposition and reconstitution.
Below are sample rules used for mapping the data source Departments class to
the domain ontology Dept class including the department ID:

:RuleDeptClass a ruleml:Imp ;
 ruleml:body
 ([a swrl:ClassAtom ;
 swrl:classPredicate
 dsont:Hresources.Departments ;
 swrl:argument1 :d]) ;
 ruleml:head
 ([a swrl:ClassAtom ;
 swrl:classPredicate domont:Dept ;
 swrl:argument1 :d]) .

:RuleDepartmentCode
 ruleml:body
 ([a swrl:ClassAtom;
 swrl:classPredicate
 dsont:Hresources.Departments ;
 swrl:argument1 :d]
 [a swrl:DataValuedPropertyAtom ;
 swrl:propertyPredicate
 dsont:hresources.departments.id ;
 swrl:argument1 :d ;
 swrl:argument2 :c]) ;
 ruleml:head
 ([a swrl:DataValuedPropertyAtom ;
 swrl:propertyPredicate domont:code ;
 swrl:argument1 :d;
 swrl:argument2 :c]) .

Running the following query for the names of all people in department 1 and

their associated project names:

PREFIX : <http://example.org/2007/08/domain-ont#>
SELECT ?pName ?name
WHERE {
 [a :Person ;
 :projectName ?pName ;
 :name ?name ;
 :department ?d] .
 ?d :code 1 }

yields: Alpha MattF, Alpha DaveK, Beta MattG, Beta DaveK.

8

7 Related Work

Various tools have been developed to provide Semantic Web interfaces to
relational databases, including D2RQ, Gnowsis [8], ISENS [9], Relational.OWL
[10] and OntoGrate [11].

We initially used D2RQ and incorporated several modifications which we
submitted to the D2RQ development team2. The changes involved query
optimizations such as eliminating duplicate table prefixing, increased selectivity
of property bridges (to limit the desired number of tables in a query), and SQL
SELECT query partitioning for smaller queries. As SQD became more
sophisticated, we determined that SBRD and other Semantic Bridges did not
require the full power of D2RQ.

Automapper corresponds to D2RQ's generate-mapping3 script. It
continues the D2RQ use of instance data for SPARQL-to-SQL mappings, entity
concepts (e.g. ClassMap, uriPattern) and separate datatype and object property
bridges. Object property bridges more precisely model foreign key relationships,
although our model is not the only possibility [12]. The d2rq:join property
has been replaced with a Constraint class in the mapping ontology. A
Constraint is modeled as a binary operation with a single operator and two
operands. Further precision is captured in KeyConstraint, a subclass of
Constraint, which limits the operator to equality. Thus, KeyConstraint
conceptually combines d2rq:refersToClassMap and d2rq:join.
d2rq:AdditionalProperty and d2rq:additionalProperty are not
used since the data source ontology is a straight-forward model of the RDBMS
schema. This simplified representation makes Automapper-generated artifacts
easier to create and understand.

8 OWL 1.1

The continued progress of of the W3C OWL Working Group provides an exciting
preview of the new features in OWL 1.1, many of which can be used to enhance
the functionality and expressivity of Automapper. The submission [13] divided
the OWL extensions into four broad categories: syntactic sugar, new Description
Logic constructs, expanded datatype expressiveness, and metamodeling
constructs. This section will focus on the extension categories that are relevant to
the relational database space, detailing how each can be used to enhance
Automapper, and then discuss the impact of the new DL-Lite sub-species [14].

8.1 New Description Logic Constructs

While many of the new description logic constructs are generally useful, only one
can be automatically derived from relational database schemas, the
IrreflexiveObjectProperty. Reflexive relationships involve the same
instance as both the subject and object of the relation. Consider the example
found above in Table 1. Suppose a new column was added, “Manager”, that was
a foreign key to the “Name” column. The referential integrity constraints of a

2http://sf.net/mailarchive/message.php?msg_id=1143734217.12135.8.camel@localhost
3http://sites.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/spec/#commandline

9

relational database system would guarantee that someone’s manager must already
be defined in the same table. Often, an additional constraint would be placed on
this foreign key to prevent someone from being their own manager. However,
OWL 1.0 cannot express this concept with a simple object (or functional object)
property. The IrreflexiveObjectProperty in OWL 1.1 provides the
ability to state that any given instance cannot be related to itself. In many cases,
the irreflexivity of a database relation can be determined in an automated fashion
and therefore this would be a valuable enhancement to Automapper. However, in
cases where the irreflexivity cannot be automatically deduced, manual
intervention can augment the generated OWL.

It is worth noting that many of the concepts represented by the other new
property constructs are used in relational database systems in functions and stored
procedures. While, these database concepts cannot be readily mapped in an
automated fashion, an analyst using Automapper with knowledge of the existing
database could take advantage of the new property constructs after the automated
process has completed.

8.2 Expanded Datatype Expressiveness

OWL 1.1 allows the definition of user-defined datatypes. Specifically, the
working group’s specification document [15] outlines three new capabilities with
two of them being relevant: dataOneOf, the ability to restrict a datatype’s
values to an enumerated list; and datatypeRestriction, the ability to
restrict a datatype’s values to a range or pattern. These two new capabilities are
very commonly used in relational database system and would be a very beneficial
enhancement to Automapper by enforcement through the configuration settings.

8.3 New OWL-DL Sub-Species

While not directly affecting Automapper, as an application in the relational
database OWL space, it is worthwhile to briefly call out DL-Lite which is
specifically designed to provide the minimum expressivity required to meet the
needs of modeling a relational database system. DL-Lite provides several
performance gains over complete OWL DL; most notably it reduces data
complexity, the complexity measured with respect to the number of facts in the
ontology, from an NP-Hard problem to a LOGSPACE problem. Thus,
Automapper should produce OWL that is restricted to DL-Lite.

9 Future Work

We are currently applying Automapper's approach to other Semantic Bridges.
Specifically, we are exploring its use for both SOAP and RESTful services in our
Semantic Bridge for Web Services (SBWS).

Currently, URIs returned by SBRD are unique but generally not resolvable.
We intend to address this issue in future versions by generating resolvable URIs
and incorporating the best practices of the Linking Open Data initiative [16].

To the best of our knowledge, we believe that our rules and their usage are

10

consistent with the design goals of the DL Safe SWRL Rules task force4.
Decidability is a critical aspect of our architecture and is therefore focused on
features such as the use of Horn rules with unary and binary predicates. We will
continue to monitor the task force’s progress and incorporate necessary
modifications. The advantages of SWRL built-ins have also proven essential. It
is our hope that they are addressed in the DL Safe task force and will be
comparable to the built-ins provided by SWRL.

References

1. C. Ritchie, Relational Database Principles. London, England: Int’l Thomson Business Press, pp. 5-
52, 2002.

2. M. Dean, “Suggestions for Semantic Web Interfaces to Relational Databases,” W3C
Workshop on RDF Access to Relational Databases, March 2007.
http://www.w3.org/2007/03/RdfRDB/papers/dean.html

3. D. Kolas, “Query Rewriting for Semantic Web Information Integration,” Sixth
International Workshop on Information Integration on the Web (IIWeb-07), Twenty-
Second AAAI Conference on Artificial Intelligence, 2007.

4. P. Biron and A. Malhotra, “XML Schema Part 2: Datatypes Second Edition,” W3C
Recommendation 28 October 2004, http://www.w3.org/TR/2004/REC-xmlschema-2-
20041028/.

5. C. Bizer and A. Seaborne, “D2RQ – Treating Non-RDF Databases as Virtual RDF
Graphs," Proc. Third International Semantic Web Conference, Nov. 2004.

6. M. Dean, G. Schreiber, S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D.
McGuinness, P. Patel-Schneider and L. Stein, "OWL Web Ontology Language Reference,"
W3C Recommendation 10 February 2004, http://www.w3.org/TR/2004/REC-owl-ref-
20040210/.

7. Codd, E.F. "A Relational Model of Data for Large Shared Data Banks," Communications
of the ACM 13, pp. 377-387, June 1970.

8. L. Sauermann and S. Schwarz, “Gnowsis Adapter Framework: Treating Structured Data
Sources as Virtual RDF Graphs,” Proc. Fourth International Semantic Web Conf., pp.
1016-1028, Nov. 2005.

9. D. Dimitrov, J. Heflin, A. Qasem, and N. Wang, “Information Integration via an End-to-
End Distributed Semantic Web System,” Proc. Fifth International Semantic Web Conf.,
pp. 764-777, Nov. 2006.

10. C.P. de Laborda and S. Conrad, "Database to Semantic Web Mapping Using RDF Query
Languages,” Lecture Notes in Computer Science: Conceptual Modeling – ER 2006, pp.
241-254, 2006.

11. D. Dou, P. LePendu, S. Kim and P. Qi, “Integrating Databases into the Semantic Web
through an Ontology-Based Framework,” Proc. Twenty-Second International Conf. on
Data Engineering Workshops (ICDEW’06), pp. 54, 2006.

12. C.P. de Laborda and S. Conrad, "Relational.OWL: a Data and Schema Representation
Format Based on OWL,” Second Asia-Pacific Conf. on Conceptual Modelling, pp.89-96,
2005.

13. I. Horrocks,,and P.F. Patel-Schneider, OWL 1.1 Web Ontology Language Overview. W3C
Submission 19 December 2006. http://www.w3.org/Submission/2006/SUBM-owl11-
overview-20061219

14. B. Grau, OWL 1.1 Web Ontology Language Tractable Fragments. W3C Submission 19
December 2006. http://www.w3.org/Submission/2006/SUBM-owl11-tractable-20061219

15. B. Motik, I. Horrocks, and P.F. Patel-Schneider, OWL 1.1 Web Ontology Language
Structural Specification and Functional-Style Syntax W3C Working Draft 8 January 2008.
http://www.w3.org/TR/2008/WD-owl11-syntax-20080108

16. D. Berrueta and J. Phipps, Best Practice Recipes for Publishing RDF Vocabularies. W3C
Working Draft 23 January 2008. http://www.w3.org/TR/2008/WD-swbp-vocab-pub-
20080123/

4 http://code.google.com/p/owl1-1/wiki/SafeRules

