
SPARQL-DL Implementation Experience

Petr Křemen1 and Evren Sirin2

1 Czech Technical University in Prague, Czech Republic
kremen@labe.felk.cvut.cz

2 Clark & Parsia, LLC, Washington, DC, USA
evren@clarkparsia.com

Abstract. Recently, SPARQL-DL was introduced in [7] as a rich query
language for OWL-DL ontologies. It provides an OWL-DL-like semantics
for SPARQL basic graph patterns which involves as special cases both
conjunctive ABox queries and mixed TBox/RBox/ABox queries over De-
scription Logic (DL) ontologies. This paper describes the implementation
of a SPARQL-DL query engine and discusses several optimizations. We
investigate the new challenges brought by the additional expressivity of
SPARQL-DL by extending a well-known benchmark.

1 Introduction

Query answering is a crucial inference service for ontology-based systems. Con-
junctive ABox queries is the standard query service for DL-based systems, and
is especially useful for applications with dominating ABox component.

Recently, the SPARQL-DL language was introduced in [7], as a language for
posing nonatomic mixed TBox/RBox/ABox queries over OWL-DL ontologies.
The ability to combine queries about the schema (classes and properties) and
the data (individuals) brings new challenges to query answering.

This paper presents experience from prototypical implementation of two
SPARQL-DL engines inside the open-source OWL-DL reasoner Pellet 3 We first
present a naive approach where we separate the evaluation of schema queries
and data queries. This approach is easier to implement using existing ABox
query engines and can handle bnodes (undistinguished variables) in the query.
The second approach is a mixed query evaluation strategy that cannot handle
bnodes in queries but can be optimized better for SPARQL-DL queries.

We also present optimization techniques for answering SPARQL-DL queries.
We generalize ABox query optimization techniques for SPARQL-DL; in short,
queries are simplified during a preprocessing step and query atoms are reordered
based on statistical analysis. We also provide a novel optimization technique for
SPARQL-DL that make use of the class and property hierarchies to prune the
search space during query evaluation.

In this paper, we also describe an initial design for a benchmark of SPARQL-
DL queries based on the the existing ABox query benchmark LUBM [2]. Using
this setup, we provide a preliminary evaluation of the query engines and the
SPARQL-DL optimizations we implemented in Pellet.
3 http://pellet.owldl.com

2 SPARQL-DL Language Overview

In this section we provide a brief description of SPARQL-DL and refer the reader
to [7] for more details. Having an OWL-DL [1] ontology O with vocabulary
VO = (Vcls,Vop,Vdp,Vap,Vind,VD,Vlit) and Vvar (resp. Vbnode) a set of variables
(resp. bnodes) we define a SPARQL-DL atom q using the following expansion:

q ← Type(a,C) | PropertyValue(a, p, d) | SameAs(a1 , a2) | DifferentFrom(a1 , a2)

| SubClassOf(C1 ,C2) | EquivalentClass(C1 ,C2) | DisjointWith(C1 ,C2)

| ComplementOf(C1 ,C2) | SubPropertyOf(p1 , p2) | EquivalentProperty(p1 , p2)

| InverseOf(p1 , p2) | ObjectProperty(p) | DataProperty(p) | Annotation(b1 , r , b2)

| Functional(p) | InverseFunctional(p) | Symmetric(p) | Transitive(p)

where a(i) ∈ Vuri∪Vvar∪Vbnode, d ∈ Vuri∪Vvar∪Vbnode∪Vlit, C(i) ∈ Vvar∪Sc,
p(i) ∈ Vuri ∪ Vvar, bi ∈ Vuri and r ∈ Vuri. The set Sc denotes the set of all
OWL-DL concepts (both atomic and complex) built upon VO (see [7]).

A SPARQL-DL query Q is a set {qi}ni=1, also denoted as q1, . . . , qn, inter-
preted as their conjunction. Each SPARQL-DL query allows for bnodes only in
individual/literal position while allowing for distinguished variables at all other
positions. In Section 4.1, we will show how we can get rid of bnodes mentioned
in SameAs atoms, but in our implementation we assume that no bnodes appear
in DifferentFrom atoms.

Having O and Q as above, we define SPARQL-DL semantics as follows. A
solution to query Q is a mapping µ : Vvar → Vcls ∪ Vop ∪ Vdp ∪ Vlit, such that,
when applied to all variables in Q we get a semiground query µ(Q) (i.e. query
containing no variables, but possibly containing bnodes), for which O |= µ(Q).
To decide whether O |= µ(Q) we need to ensure that for each model I =
(∆I , ·I) of O there exists an evaluation function σ : Vind ∪ Vbnode ∪ Vlit → ∆I ,
that coincides with ·I on literals and individuals, but provides a mapping for a
bnode to a domain element, that satisfies (I |=σ µ(qi)) each semiground atom
µ(qi) ∈ Q, see Table 1). The mapping σ ensures that bnodes behave like proper
undistinguished variables, i.e. variables that can be bound not only to asserted
individuals but also to inferred ones.

3 SPARQL-DL Query Examples

In this section, we provide some example queries that show how data and schema
queries can be combined in SPARQL-DL. Our examples are based on the widely
used LUBM dataset [2] which we extended for the evaluation of our implemen-
tation (see Section 6).

The LUBM dataset describes the university domain with information about
departments, courses, students, and faculty. This dataset comes with 16 pure
ABox queries with different characteristics (low vs. high selectivity, small vs.
large input, etc.). In a similar fashion, we constructed 10 SPARQL-DL queries
(all queries are available online4). Our primary goal was to exercise the novel
4 http://svn.versiondude.net/clark-parsia/datasets/lubm/query-owled

Table 1. Interpretation of SPARQL-DL semi-ground atoms. The query atoms are
abbreviated with their capital letters (e.g. SubClassOf is written as SCO) with the
exception of Transitive atom which is abbreviated as Tr.

semi-ground µ(q) I |=σ µ(q) if:

T(a,C) σ(a) ∈ CI
PV(a, p, d) (σ(a), σ(d)) ∈ pI
SA(a1 , a2) σ(a1) = σ(a2)
DF(a1 , a2) σ(a1) 6= σ(a2)
SCO(C1 ,C2) CI1 ⊆ CI2
EC(C1 ,C2) CI1 = CI2
DW(C1 ,C2) CI1 ∩ CI2 = ∅
CO(C1 ,C2) CI1 = ∆I \ CI2

semi-ground µ(q) I |=σ µ(q) if:

SPO(p1 , p2) pI1 ⊆ pI2
EP(p1 , p2) pI1 = pI2
IO(p1 , p2) pI1 = (pI2)−

F(p) pI is a function
IF(p) (pI)− is a function
S(p) pI is symmetric
Tr(p) pI is transitive
A(b1 , r , b2) (bI1 , b

I
2) ∈ rI

features of SPARQL-DL and identify the new challenges introduced by the ad-
ditional expressivity SPARQL-DL provides over traditional ABox queries. The
following examples demonstrate some of the features we used in these queries.

Example 1 (Variables in property position). Find all the graduate students that
are related to a course and find what kind of relationship (e.g. takesCourse,
teachingAssistantOf) it is:

Type(?x , GraduateStudent),PropertyValue(?x , ?y , ?z),Type(?z , Course)

Example 2 (Mixed ABox/TBox query). Find all the students who are also em-
ployees and find what kind of employee (e.g. ResearchAssistant) they are:

Type(?x , Student),Type(?x , ?C),SubClassOf(?C , Employee)

Asked against the LUBM dataset this query returns students who work as
ResearchAssistants.

Example 3 (Mixed ABox/RBox query). Find all the members of Dept0 and what
kind of membership (e.g. worksFor, headOf) it is:

Type(?x , Person),PropertyValue(?x , ?y , Dept0),SubPropertyOf(?y , memberOf)

4 SPARQL-DL Query Answering

4.1 Preprocessing

It is possible to simplify a query by removing redundant atoms, i.e. atoms that
are necessarily satisfied due to other atoms in the query. One such simplifica-
tion is the domain/range simplification introduced in [6]. In addition, we can
recursively get rid of SameAs atoms with bnodes. Algorithm 1 takes Q and re-
turns a transformed Q′ without bnodes in SameAs atoms such that O |= µ(Q)
iff O |= µ(Q′).

Algorithm 1 Preprocessing of SameAs atoms with bnodes
1: function simplifySameAs(Q)
2: remove from Q all q = SameAs(a, a), where a /∈ Vvar or a occurs just in q.
3: if q = SameAs(b, a) ∈ Q, or q = SameAs(a, b) ∈ Q, where b ∈ Vbnode then
4: apply b 7→ a to Q
5: Q← simplifySameAs(Q)
6: return Q
7: end function

The procedure first removes all trivially satisfied SameAs atoms from the
query, skipping those with variables without any other occurence in the query.
Next, whenever a query Q in the set S contains a SameAs atoms with bnodes, all
occurences of the bnode (or any of the bnodes) are replaced with the other term.
For example SameAs(b, ?x),Type(b, Person) is transformed to Type(?x , Person).
However, this preprocessing cannot be used for SameAs atoms without bnodes,
since O might contain individuals explicitly stated to be owl : sameAs in O. For
example, in SameAs(?x , ?y) it is necessary to bind to ?x and ?y to all combina-
tions of individuals in the equivalence set induce by the owl : sameAs relation
in O. Correctness follows from the semantics of the SameAs atom (see Table 1)
and the following idea: Since it is necessary to construct one σ evaluation for
each interpretation I, we can always choose σ(b) = σ(µ(a)), if a is a variable,
and σ(b) = σ(a) otherwise.

The syntactic overhead of SPARQL-DL makes other simplifications possi-
ble. We can remove trivially satisfied atoms: (i) reflexive atoms with the same
argument from the query that trivially hold, for example SubClassOf(C, C), or
SubClassOf(?x , ?x) whenever ?x is used at some other atom in the query; (ii)
atoms with owl:Thing or owl:Nothing in a particular way, for example as in
SubClassOf(•, owl : Thing). On the other hand we can immediately fail queries
for irreflexive atoms (e.g. DisjointWith,DifferentFrom) with the same argument.
These preprocessing steps are not exhaustive but they are all quite cheap and
since they decrease the number of atoms in the query, they are valuable especially
w.r.t. the cost based reordering presented in Section 5.1.

The next preprocessing step is to split the query into connected components
in order to avoid computing cross-products of their results. From now on, w.l.o.g.
we will assume that a SPARQL-DL query consists of just one connected com-
ponent.

4.2 Query Evaluation

Separated Evaluation To evaluate a SPARQL-DL query Q (possibly with
bnodes) preprocessed using the above techniques we can make use of an existing
ABox query engine. A SPARQL-DL query Q can be partitioned into two parts:

1. Qc that contains all Type and PropertyValue atoms from Q, and
2. Qs that contains all other atoms from Q.

Intuitively, Qc represents an ABox (data) query whereas Qs represents the
TBox/RBox (schema) query. However, note that, Qc is not a proper ABox query
in the traditional sense since there might be variables in class or property po-
sitions. Furthermore, there might not be atoms in Qs that mentions such vari-
ables. For this reason, we augment Qs with atoms of the form SubClassOf(?x , ?x)
(resp. SubPropertyOf(?x , ?x)) for each ?x that occurs in Type(•, ?x) ∈ Qc (resp.
PropertyValue(•, ?x , •) ∈ Qc) but does not occur in Qs. Note that, these addi-
tional atoms have no effect to the query results but they ensure that Qs will
contain all class and property variables mentioned in the query.

Algorithm 2 is used to answer Qs that consists of just one connected com-
ponent (if there are more connected components we can evaluate each of them
separately as in Section 4.1). The algorithm proceeds as follows: First, given an
ordering W of query atoms, an atom q is chosen (next(O,W,B)) for evaluation.
Second, in q we replace variables bound in B with corresponding values. Result-
ing query atom q is then evaluated using function evalAtom(O, q,Wr, B,R).
This function (i) checks whether O |= q, if q is ground, (ii) explores possible
bindings for all variables of q in other cases, using the following interface to the
OWL-DL reasoner 5:

allC(O), allP(O), allI(O) return all named classes, resp. properties, resp. in-
dividuals defined in O.

en(O, q) checks whetherO |= q, for a ground SPARQL-DL atom q. As SPARQL-
DL atoms correspond to OWL-DL constructs/axioms their reduction to the
basic inference services is straightforward from [7] and [4].

subC(O, C), supC(O, C), eqC(O, C) returns all subclasses, resp. superclasses,
resp. equivalent classes of C in O.

subP(O, p), superP(O, p), eqP(O, p) returns all subproperties, resp. super-
properties, resp. equivalent properties to p in O.

All atoms from Qs are evaluated using the above reasoner interface. As an
example, let’s consider a call evalAtom(O,DisjointWith(?x , ?y),Wr, , R). For
each possible binding C ∈ allC(O) for ?x we try to get disjoint classes D of
C using subC(O,¬C). For each such binding we call eval(O,Wr, B ∪ {?x 7→
C, ?y 7→ D}, R) to check the rest of the query (See the technical report [5] for a
more detailed description of the evalAtom(•) algorithm).

Evaluation of Qs generates a collection R of result bindings. Each B ∈ R
is then applied to Qc, possibly binding some class/property variables, result-
ing in query Q∗c . This query is then evaluated using the underlying conjunc-
tive ABox query engine. One way to avoid unnecessary evaluation of Qs is to
evaluate it as soon as all of its variables get bound in B. Let’s take an exam-
ple, Type(?z , ?x),SubClassOf(?x , Person),EquivalentClasses(?x , ?y). This query
is split into Qc = Type(?z , ?x) and Qs = SubClassOf(?x , Person),EC(?x , ?y).
Whenever a binding C for ?x is found during evaluation of SubClassOf we can
5 Although these operations, together with those in Section 4.2, could be reduced

to several consistency checks, this more high-level interface allows for well-known
optimizations of classification/instance retrieval operations [3], [8]

Algorithm 2 SPARQL-DL Query Evaluation Procedure
1: function eval(O,W,B,R) . W is a list of query atoms, B is the current variable

binding, R is the set of found bindings.
2: if W = ∅ then return R ∪ {B}
3: [q|Wr]← next(O,W,B)
4: apply B to the atom q.
5: return evalAtom(O, q,Wr, B,R)
6: end function

immediately evaluate Q∗c = Type(?z , C), thus protecting the same query from
being evaluated for each ?y binding.

The main advantage of this approach is that it makes use of an existing
conjunctive ABox engine, thus providing a support for evaluation of bnodes for
free. On the other hand, this approach might not have an optimal performance
w.r.t. the reordering optimization introduced in Section 5.1.

Mixed Evaluation For queries without bnodes we can make a simple extension
of (i) the evalAtom(•) method for handling also Type and PropertyValue atoms
and of (ii) the OWL-DL reasoner interface:

ir(O, C) returns all instances of class C in O. Several strategies and optimizations
can be considered here, e.g. linear vs. binary instance retrieval [3].

cr(O, a) returns all named classes that are types of a in O. Strategies similar to
those for ir(O, C) can be used.

This approach performs better w.r.t. the query reordering optimization de-
scribed below. Unlike separated evaluation where Qs is executed first and re-
ordered separately from Qc, in mixed evaluation the query is reordered as a
whole and schema and the data parts can be evaluated in any order.

5 Optimizations

5.1 Cost-based Query Reordering

A query reordering optimization for ABox queries without bnodes is described
in [6]. The idea is to estimate the cost of evaluating a query atom by estimating
the number of answers to that query atom. The estimates are based on statistics
computed by cheap preprocessing of the ontology. These estimates are then used
to find a permutation of query atoms that will provide optimal execution.

For the purposes of SPARQL-DL, we generalized the reordering strategy
mentioned above. The query is reordered and the ordering with minimal cost
is chosen according to the Algorithm 3. The cost computation for given atom
ordering is shown in Algorithm 4. For each query atom q we need two func-
tions: eC(O, B, q), that estimates the cost needed to evaluate an atom q, and

eB(O, B, q), that estimates number of execution branches generated by evalu-
ating q. Both functions take as an argument a collection B of bound variables,
binding of which is unknown at given execution point.

Algorithm 3 Static Query Reordering
1: function next(O,W,B)

Require: W 6= ∅
2: if B 6= ∅ then return W

3: W ∗ ←W
4: cost∗ ←∞
5: for Wp ∈ perm(W) do . perm(W) returns all permutations of W
6: if cost∗ > staticCost(Wp, ∅) then
7: cost∗ ← staticCost(Wp, ∅)
8: W ∗ ←Wp

9: return W ∗

10: end function

Algorithm 4 Static Ordering Cost Computation
function staticCost(W,B)

if W = ∅ then return 1

[q|Wr]←W
return eC(B, q) + eB(B, q) · staticCost(Wr, B ∪ {all variables in q})

5: end function

Knowledge Base Operation Costs For each knowledge base operation de-
scribed, a typical cost can be estimated. We reduce each of these cost estimates
to four atomic costs, which are parameters of the optimizer: noSat, oneSat,
classify and realize for operations requiring respectively no consistency check,
one consistency check, ontology classification and ontology realization. As an
example let’s take an atom DisjointWith(?x , C), evaluation of which is reduced to
the subC(¬C). Cost estimates are reasoner dependent, for Pellet the call subC(•)
would require ontology classification, thus eC(∅,DisjointWith(?x , C)) = classify.
Having a non-empty B it is necessary to estimate typical performance of the op-
erations, thus eC({?x},DisjointWith(?x , C)) = oneSat.

Estimating number of candidates While the costs of knowledge base op-
erations are dependent on the form of their arguments and on the KB state
(classified, realized), the number of candidates for a given query atom can be
estimated using a cheap preprocessing of O, making use of two structures :

Information cached during consistency checking is used to get estimates
for query atoms Type,PropertyValue, SameAs, DifferentFrom, like number of
types, or number of same individuals for given individual, etc.

Told axioms are used to get estimates for other atoms, like number of named
subclasses for given class, number of functional properties in O, etc.

For example, to compute the number of branches for atom SubClassOf(?x , C),
we would need to estimate how many named subclasses C has in O. If C is a
named class, we can simply use the told class taxonomy for this estimate. If
C is a complex class then some kind of heuristics can be used, but we did not
investigate this possibility in detail and focused on named concepts in queries.

5.2 Down-monotonic Variables

In addition to the general cost-based reordering of the query, we can also exploit
the query structure. For example, consider the query

SubClassOf(?x , Person),Type(?y , ?x)

which tries to retrieve all instances ?y of the class Person together with their
actual type ?x. When evaluating this query in this order we can exploit informa-
tion from the class hierarchy and prevent variable ?x to be bound to subclasses
of a class C which produced no result when used as a binding for ?x. Thus, we
can start exploring the class hierarchy from the top and prune the parts of the
class hierarchy if the root of a part does produce no results.

For this purpose we introduce the following notion. At a given execution
point, a down-monotonic variable is any variable ?x ∈ Vvar that occurs in a
Type(•, ?x), or PropertyValue(•, ?x , •), later in the query Q. Whenever the engine
is about evaluating an atom q that contains a down-monotonic variable ?x, it
can safely perform the above described pruning.

6 Experiments

We have implemented both the separated and the mixed query evaluation strate-
gies in the open-source OWL-DL reasoner Pellet. As mentioned in Section 3,
instead of creating a new benchmark from scratch we decided to build our ex-
periments on top of the LUBM dataset and queries. LUBM is a data-oriented
benchmark with a smal schema (only several tens of classes and properties) and
large number of instances (17000 individuals in the LUBM(1) dataset we used).

We ran the 10 SPARQL-DL queries we created against both the separated
and the mixed query engines. In the mixed query engine we ran the experiments
both with and without down monotonic variable optimization. Figure 1 shows
the query execution times we got for these three instances of query engines.

The results show that the separated query evaluation can match the perfor-
mance of mixed query engine in some cases but is mostly outperformed. Interest-
ingly, there is a case (Q1 which corresponds to Example 1 from Section 3) where

Fig. 1. Query answering times (in miliseconds) for LUBM(1) using different query
engine configurations. All the timings are computed as the average of 10 independent
runs on a Intel Core 2 Duo 2.33GHz machine with Java heap size set to 512mb.

separated engine performs significantly better. Investigating the query evaluation
for this query revealed that sometimes evaluating TBox/RBox atoms first and
then reordering the ABox query based on those results provide better results. For
Q1, the separated engine tries properties in the KB one by one and changes the
ordering of the ABox query for different properties. These reorderings are much
more precise because they use the statistics for the actual property used while
evaluating the query atom. Mixed evaluation, on the other hand, computes the
reordering once at the beginning based on the overall statistics averaged over all
properties and uses the same ordering for every property. This analysis indicates
that dynamic reordering strategy in mixed evaluation would be valuable.

The results show that there is only one case (query 7) where the optimization
for down-monotonic variables improves the performance. This is not too surpris-
ing considering that this optimization exploits the structure of the class/property
hierarchies which are both shallow and narrow in the case of LUBM. The query
7 refers to owl : Thing (top of the class hierarchy) in a TBox axiom making the
whole class hierarchy relevant for this query and that makes the effect of down
monotonism most visible. It is also important to note that the optimization for
down monotonic variable does not introduce any overhead for the other queries.

7 Conclusions and Future Work

In this paper, we have presented SPARQL-DL evaluation scheme and experience
from its implementation in the Pellet reasoner. Two engines were shown: (i) a
separated query engine that makes use of an existing ABox query engine as a
black box, and (ii) a mixed query engine that answers queries without undistin-
guished variables. For both engines we have introduced two optimizations; a cost

based query reordering and a notion of down-monotonic variables that prunes
the search space of the query execution making use of concept/role hierarchies.

Our preliminary experiments show that the separated query evaluation works
reasonably well in most cases. There are even some cases where it outperforms
the mixed query engine which suggests the mixed query engine can be improved
by a dynamic reordering method that we will investigate in the future. Also the
cost-based reordering currently implemented is a preliminary prototype and will
be revised to be applicable to ontologies with different characteristics.

Although not mentioned in the paper, the engine can be augumented in a
simple way with non-monotonic atoms (like DirectSubClassOf), see [7]. These
atoms seem to be useful from the practical point of view, where it is often
valuable to get just the top-most/bottom-most element in the concept or role
the taxonomy satisfying given constraints.

There are several other directions for future work. First, we will likely expand
SPARQL-DL and Pellet’s implementation of SPARQL-DL to cover more of the
SPARQL language, like FILTERs and OPTIONALs. Second, we want to extend
the mixed query engine with evaluation of queries with bnodes in the Type and
PropertyValue atoms. Handling DifferentFrom atoms with bnodes is an open issue.

8 Acknowledgements

This work was done during Petr Křemen’s internship at Clark & Parsia, LLC dur-
ing the Semantic Summer 2007 program and was partially funded by the NATO
Consultation, Command and Control Agency (NC3A) and by the grant No.
MSM 6840770038 “Decision Making and Control for Manufacturing III” of the
Ministry of Education, Youth and Sports of the Czech Republic; we thank Dave
Clarke, Alex Tucker, Sven Kuehne, and Arno Bijl for their support. The authors
would like to thank Bijan Parsia for insightful discussions about SPARQL-DL.

References

[1] OWL Web Ontology Language Semantics and Abstract Syntax. W3C Recommen-
dation. http://www.w3.org/TR/2004/REC-owl-semantics-20040210/, 2004.

[2] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for OWL
knowledge base systems. Journal of Web Semantics, 3(2-3):158–182, 2005.

[3] V. Haarslev and R. Moeller. Optimization strategies for instance retrieval, 2002.
[4] Ian Horrocks and Peter F. Patel-Schneider. Reducing OWL entailment to descrip-

tion logic satisfiability. J. Web Sem., 1(4):345–357, 2004.
[5] Petr Kremen and Evren Sirin. Evaluating SPARQL-DL : First Experience. Tech-

nical Report GL 195/08, Czech Technical University in Prague, 2008.
[6] Evren Sirin and Bijan Parsia. Optimizations for answering conjunctive abox

queries. In Description Logics, 2006.
[7] Evren Sirin and Bijan Parsia. SPARQL-DL: SPARQL Query for OWL-DL. In

OWLED, 2007.
[8] Dmitry Tsarkov, Ian Horrocks, and Peter F. Patel-Schneider. Optimizing termi-

nological reasoning for expressive description logics. J. of Automated Reasoning,
39(3):277–316, 2007.

