CEX and MEX: Logical Diff and Logic-based Module Extraction in a Fragment of OWL

B. Konev, C.Lutz, D.Walther, and F.Wolter

Liverpool University, UK TU Dresden, Germany

April 1, 2008

Motivation: SNOMED CT

- SNOMED CT the Systematised Nomenclature of Medicine (Clinical Terms).
- $\bullet \sim 400,000 \text{ terms}$
- Simple structure:

```
Hindbrain_hernia_headache  

Headache_disorder  
∃Due_to.Cerebral_herniation
```

ullet \mathcal{EL} representation

NB: \mathcal{EL} will be a part of the updated OWL (??)

Understanding Changes in Terminologies

Suppose the following

```
\begin{array}{ccc} \mathsf{Neck\_injection} & \sqsubseteq & \mathsf{Operation} \\ \mathsf{Neck\_operation} & \sqsubseteq & \mathsf{Operation} \\ \mathsf{Removal\_f.b.\_from\_neck} & \equiv & \mathsf{Neck\_operation} \sqcap \mathsf{Removal\_foreign\_body} \end{array}
```

is refined as

```
        Neck_injection
        □
        Neck_operation

        Neck_operation
        □
        Operation

        Removal_f.b._from_neck
        ≡
        Neck_operation □ Removal_foreign_body
```

The refined terminology implies

- Neck_injection

 Neck_operation
- Neck_injection □ Removal_foreign_body ⊑ Removal_f.b._from_neck

Logical Diff

What's the difference between different versions of a terminology?

- What's the difference over some signature Σ ?
- T_1 , $T_2 \mathcal{EL}$ terminologies
- Σ signature

$$\bullet \ \mathsf{diff}_{\Sigma}(T_1, T_2) = \left\{ C \sqsubseteq D \middle| \begin{array}{l} T_1 \not\models C \sqsubseteq D \\ T_2 \models C \sqsubseteq D \\ \mathsf{sig}(C \sqsubseteq D) \subseteq \Sigma \end{array} \right\}$$

- We give a compact representation of diff $\Sigma(T_1, T_2)$
- Polytime algorithm

SNOMED CT'05 vs SNOMED CT'06: Joint Signature

- diff(SNOMED CT'05,SNOMED CT'06) on $\Sigma = sig(SNOMED \ CT'05) \cap sig(SNOMED \ CT'06)$
 - 689 seconds
 - $|diffL_{\Sigma}| + |diffR_{\Sigma}| = 162010$
 - Class hierarchy comparison misses 32475 of them!

SNOMED CT'05 vs SNOMED CT'06: Fragments

- Σ randomly selected from sig(SNOMED CT'05) ∩ sig(SNOMED CT'06)
- 20 samples for every signature size

	CEX: diff(SNOMED CT'05,SNOMED CT'06)							
Size of	Time	Memory	$ diffL_{\Sigma} $	$ diffR_{\Sigma} $				
Σ	(Sec.)	(MByte)						
100	513.1	1 393.7	0.0	0.0				
1 000	512.4	1 394.6	2.5	2.5				
10 000	517.7	1 424.3	183.2	122.0				
100 000	559.8	1 473.2	11 322.1	4 108.5				

Role box ignored

Semantic Modules

- $\sim 10 15$ minutes is fine, but we want better
- Time depends more on the terminology size than on Σ
- Extract modules!
 - Module should be a "replacement" for the terminology

Theorem

- \bullet T acyclic \mathcal{EL} terminology
- No trivial axioms $A \equiv \top$, etc in T

The smallest semantic module can be computed in polytime

CEX on MEX

	CEX: di	iff(SNOMED	CT'05,SN	CEX: diff(Mod'05,Mod'06)		
Size of	Time	Memory	$ diffL_{\Sigma} $	$ diffR_{\Sigma} $	Time	Memory
Σ	(Sec.)	(MByte)			(Sec.)	(MByte)
100	513.1	1 393.7	0.0	0.0	3.66	116.5
1 000	512.4	1 394.6	2.5	2.5	4.46	122.5
10 000	517.7	1 424.3	183.2	122.0	22.29	126.5
100 000	559.8	1 473.2	11 322.1	4 108.5	189.98	615.8

Minimal Semantic Modules

Consider

$$\label{eq:linear_loss} \begin{split} & \mathsf{Hindbrain_hernia_headache} \sqsubseteq \\ & \mathsf{Headache_disorder} \ \sqcap \ \exists \mathsf{Due_to}.\mathsf{Cerebral_herniation} \\ & \mathsf{Removal_f}.\mathsf{b}._\mathsf{from_neck} \equiv \mathsf{Neck_operation} \ \sqcap \ \mathsf{Removal_foreign_body} \end{split}$$

- $\Sigma = \{Hindbrain_hernia_headache, Removal_f.b._from_neck\}$
- $M = \emptyset$ (nothing!)

Many module extraction techniques would select both axioms!

definition closed

Definition-Closed vs Semantic Modules: Size

- \bullet Σ randomly selected from SNOMED CT'05
- 1000 samples for each signature size
- with role box (under simplifying assumptions)

Definition-Closed vs Semantic Modules: Frequency

"I'll be what you want me to be"

Consider again

```
\label{eq:linear_hermia_headache} \begin{split} & \text{Hindbrain\_hernia\_headache} \sqsubseteq \\ & \text{Headache\_disorder} \ \sqcap \ \exists \text{Due\_to.Cerebral\_herniation} \\ & \text{Removal\_f.b.\_from\_neck} \equiv \text{Neck\_operation} \ \sqcap \ \text{Removal\_foreign\_body} \end{split}
```

But this time

- $\Sigma = \{ Hindbrain_hernia_headache, Removal_f.b._from_neck, Neck_operation \}$
- Now, M contains
 Removal_f.b._from_neck ≡
 Neck_operation □ Removal_foreign_body

More flexibility in what does and what does not go into the module

Future Work

Logical diff

- Logical diff with a role box
 - Undecidable with arbitrary role inclusion axioms
 - $r \sqsubseteq s$ no problem
 - Transitivity, left/right identities under development
- Logical diff for query answering
- Logical diff based on model conservativity
- More expressive languages
- Pinpointing

Module extraction

- Minimal modules for \mathcal{EL} + role box
- Module extraction for more expressive languages
 - Non-tractable algorithms for minimal modules
 - Locality + minimal \mathcal{EL} -semantic modules