Petr Kfemen'

Evren Sirin?
Czech Technical University in Prague (CZ)

2Clark & Parsia (US)

April 2008

«0O>» «F» «

What is SPARQL-DL
Different Perspectives
SPARQL-DL constructs

SPARQL-DL Evaluation
Preprocessing
Evaluation Strategies
Optimizations

Examples

» query language for OWL-DL ontologies.

DA

SPARQL-DL vs. Conjunctive Queries

» query language for OWL-DL ontologies.
» mixed ABox / TBox queries :
TBox Conjunctive ABox Queries.
"Get all teachers and their students.”

[=]

V4

w
i
|

Instance : instance :
?2x
teacherOf
_a

takesCourse

takesCourse takesCourse
oo

A
i
|

takesCourse

SPARQL-DL vs. Conjunctive Queries

» query language for OWL-DL ontologies.

» mixed ABox / TBox queries :
TBox Mixed TBox/ABox Queries.

"Get all teachers and their students.”

... together with the type of the teachers."
Employee|

A
i
|

A
|
|

instance | instance | instance
teacherOf teacherOf
takesCourse takesCourse takesCourse

takesCourse

» SPARQL-DL uses SPARQL syntax

DA

SPARQL-DL vs. SPARQL

» SPARQL-DL uses SPARQL syntax

» SPARQL-DL provides OWL-DL semantics for SPARQL
basic graph patterns:

SPARQL-DL vs. SPARQL

» SPARQL-DL uses SPARQL syntax
» SPARQL-DL provides OWL-DL semantics for SPARQL
basic graph patterns:

Type(?x, ?t), SubClassOf(?t, Employee),

PropertyValue(?x, teacherOf, _ : a), PropertyValue(?y, takesCourse, - : a).

SPARQL-DL vs. SPARQL

» SPARQL-DL uses SPARQL syntax

» SPARQL-DL provides OWL-DL semantics for SPARQL
basic graph patterns:

Type(?x, ?t), SubClassOf(?t, Employee),
PropertyValue(?x, teacherOf, _ : a), PropertyValue(?y, takesCourse, - : a).

SELECT 2t ?x ?y
WHERE {
?x rdf:type ?t .
?t rdfs:subClassOf :Employee.
?x :teacherOf _:a .
?y :takesCourse _:a .

it
€
()
»
)
€

SPARQL-DL query is a conjunction of atoms:

Type(i, c), PropertyValue(i, p, j) — conjunctive query atoms allowing
distinguished variables in ¢/ p positions

«O» «F»

DA

SPARQL-DL Constructs

SPARQL-DL query is a conjunction of atoms:

Type(i, c), PropertyValue(/, p,j) — conjunctive query atoms allowing
distinguished variables in ¢/ p positions

SameAs(i,), DifferentFrom(i, /) — OWL individual axiom patterns.

SPARQL-DL Constructs

SPARQL-DL query is a conjunction of atoms:

Type(i, c), PropertyValue(/, p,j) — conjunctive query atoms allowing
distinguished variables in ¢/ p positions

SameAs(i,), DifferentFrom(i, /) — OWL individual axiom patterns.

SubClassOf(c, d), EquivalentClass(c, d), DisjointWith(c, d) — OWL class
axiom patterns

SPARQL-DL Constructs

SPARQL-DL query is a conjunction of atoms:

Type(i, c), PropertyValue(/, p,j) — conjunctive query atoms allowing
distinguished variables in ¢/ p positions

SameAs(i,), DifferentFrom(i, /) — OWL individual axiom patterns.

SubClassOf(c, d), EquivalentClass(c, d), DisjointWith(c, d) — OWL class
axiom patterns

ComplementOf(c, d) — pattern for matching class complement (the only
class description construct)

SPARQL-DL Constructs

SPARQL-DL query is a conjunction of atoms:

Type(i, c), PropertyValue(/, p,j) — conjunctive query atoms allowing
distinguished variables in ¢/ p positions

SameAs(i,), DifferentFrom(i, /) — OWL individual axiom patterns.

SubClassOf(c, d), EquivalentClass(c, d), DisjointWith(c, d) — OWL class
axiom patterns

ComplementOf(c, d) — pattern for matching class complement (the only
class description construct)

SubPropertyOf(p, q), EquivalentProperty(p, g), InverseOf(p, q)

SPARQL-DL Constructs

SPARQL-DL query is a conjunction of atoms:

Type(i, c), PropertyValue(/, p,j) — conjunctive query atoms allowing
distinguished variables in ¢/ p positions

SameAs(i,), DifferentFrom(i, /) — OWL individual axiom patterns.

SubClassOf(c, d), EquivalentClass(c, d), DisjointWith(c, d) — OWL class
axiom patterns

ComplementOf(c, d) — pattern for matching class complement (the only
class description construct)

SubPropertyOf(p, q), EquivalentProperty(p, g), InverseOf(p, q)
ObjectProperty(p), DataProperty(p), FunctionalProperty(p)

SPARQL-DL Constructs

SPARQL-DL query is a conjunction of atoms:

Type(i, c), PropertyValue(/, p,j) — conjunctive query atoms allowing
distinguished variables in ¢/ p positions

SameAs(i,), DifferentFrom(i, /) — OWL individual axiom patterns.

SubClassOf(c, d), EquivalentClass(c, d), DisjointWith(c, d) — OWL class
axiom patterns

ComplementOf(c, d) — pattern for matching class complement (the only
class description construct)

SubPropertyOf(p, q), EquivalentProperty(p, g), InverseOf(p, q)
ObjectProperty(p), DataProperty(p), FunctionalProperty(p)

InverseFunctional(p), Symmetric(p), Transitive(p) — OWL property axiom
patterns

SPARQL-DL Constructs

SPARQL-DL query is a conjunction of atoms:

Type(i, c), PropertyValue(/, p,j) — conjunctive query atoms allowing
distinguished variables in ¢/ p positions

SameAs(i,), DifferentFrom(i, /) — OWL individual axiom patterns.

SubClassOf(c, d), EquivalentClass(c, d), DisjointWith(c, d) — OWL class
axiom patterns

ComplementOf(c, d) — pattern for matching class complement (the only
class description construct)

SubPropertyOf(p, q), EquivalentProperty(p, g), InverseOf(p, q)
ObjectProperty(p), DataProperty(p), FunctionalProperty(p)

InverseFunctional(p), Symmetric(p), Transitive(p) — OWL property axiom
patterns

Annotation(/, p,j) — ground atom for matching OWL annotations

SPARQL-DL Constructs

SPARQL-DL query is a conjunction of atoms:

Type(i, c), PropertyValue(i, p, j) — conjunctive query atoms allowing
distinguished variables in ¢/ p positions

SameAs(i,), DifferentFrom(i, /) — OWL individual axiom patterns.

SubClassOf(c, d), EquivalentClass(c, d), DisjointWith(c, d) — OWL class
axiom patterns

ComplementOf(c, d) — pattern for matching class complement (the only
class description construct)

SubPropertyOf(p, q), EquivalentProperty(p, g), InverseOf(p, q)
ObjectProperty(p), DataProperty(p), FunctionalProperty(p)

InverseFunctional(p), Symmetric(p), Transitive(p) — OWL property axiom
patterns

Annotation(/, p,j) — ground atom for matching OWL annotations

...+ non-monotonic extension — DirectType(/, ¢), DirectSubClassOf(c, d),
StrictSubClassOf(c, d), DirectSubProperty(p, q),
StrictSubPropertyOf(p, q).

variables

» getting rid of all SameAs atoms with undistinguished

«0O0>» «F)>r « =

<

DA

» getting rid of all SameAs atoms with undistinguished
variables

g1(?x) — SameAs(_: b, 7x), Type(-: b,Person)
turns

g2(?x) — Type(?x,Person)

DA

Preprocessing

» getting rid of all SameAs atoms with undistinguished
variables

g1(?x) — SameAs(_: b, ?x), Type(-: b,Person)
turns

g2(?x) — Type(?x,Person)

» BUT, we cannot perform this simplification for distinguished
variable in SameAs atoms, since there can be several
individuals in KB that are stated to be same.

Preprocessing

» getting rid of all SameAs atoms with undistinguished
variables

g1(?x) — SameAs(_: b, ?x), Type(-: b,Person)
turns

g2(?x) — Type(?x,Person)

» BUT, we cannot perform this simplification for distinguished
variable in SameAs atoms, since there can be several
individuals in KB that are stated to be same.

» removing trivially satisfied atoms is valuable w.r.t. the cost
based reordering

it
kN
(O}

Preprocessing

» getting rid of all SameAs atoms with undistinguished
variables

g1(?x) — SameAs(_: b, ?x), Type(-: b,Person)
turns
g2(?x) — Type(?x,Person)

» BUT, we cannot perform this simplification for distinguished
variable in SameAs atoms, since there can be several
individuals in KB that are stated to be same.

» removing trivially satisfied atoms is valuable w.r.t. the cost
based reordering

» splitting the query into connected components in order to
avoid computing cross-products of their results.

u]
8]
I
ul
it

Preprocessing

» getting rid of all SameAs atoms with undistinguished
variables

g1(?x) — SameAs(_: b, ?x), Type(-: b,Person)
turns
g2(?x) — Type(?x,Person)

» BUT, we cannot perform this simplification for distinguished
variable in SameAs atoms, since there can be several
individuals in KB that are stated to be same.

» removing trivially satisfied atoms is valuable w.r.t. the cost
based reordering

» splitting the query into connected components in order to
avoid computing cross-products of their results.

» queries without DifferentFrom atoms with undistinguished
variables.

Separated vs. Mixed Evaluation

separated partitioning a SPARQL-DL query Q into the ABox
part Q¢ (Type and PropertyValue) and Schema
part Qs

Separated vs. Mixed Evaluation

separated partitioning a SPARQL-DL query Q into the ABox
part Q¢ (Type and PropertyValue) and Schema
part Qs
» augumenting Qs with SubClassOf(7x, ?x),
resp. SubPropertyOf(?x, ?x) for all ?x in
Type(e, ?x), resp. PropertyValue(e, 7x, o)
atoms that do not appear in Qs.

Separated vs. Mixed Evaluation

separated partitioning a SPARQL-DL query Q into the ABox
part Q¢ (Type and PropertyValue) and Schema
part Qs
» augumenting Qs with SubClassOf(7x, ?x),
resp. SubPropertyOf(?x, ?x) for all ?x in
Type(e, ?x), resp. PropertyValue(e, 7x, o)
atoms that do not appear in Qs.
» evaluate first Qs using the SPARQL-DL
engine and for each binding found evaluate
Q. part using the existing ABox query engine

Separated vs. Mixed Evaluation

separated partitioning a SPARQL-DL query Q into the ABox
part Q¢ (Type and PropertyValue) and Schema
part Qs
» augumenting Qs with SubClassOf(7x, ?x),
resp. SubPropertyOf(?x, ?x) for all ?x in
Type(e, ?x), resp. PropertyValue(e, 7x, o)
atoms that do not appear in Qs.
» evaluate first Qs using the SPARQL-DL
engine and for each binding found evaluate
Q. part using the existing ABox query engine

mixed using SPARQL-DL evaluation for all atoms

Separated vs. Mixed Evaluation

separated partitioning a SPARQL-DL query Q into the ABox
part Q¢ (Type and PropertyValue) and Schema
part Qs
» augumenting Qs with SubClassOf(7x, ?x),
resp. SubPropertyOf(?x, ?x) for all ?x in
Type(e, ?x), resp. PropertyValue(e, 7x, o)
atoms that do not appear in Qs.
» evaluate first Qs using the SPARQL-DL
engine and for each binding found evaluate
Q. part using the existing ABox query engine

mixed using SPARQL-DL evaluation for all atoms
better performance w.r.t. the query reordering.

Separated vs. Mixed Evaluation

separated partitioning a SPARQL-DL query Q into the ABox
part Q¢ (Type and PropertyValue) and Schema
part Qs
» augumenting Qs with SubClassOf(7x, ?x),
resp. SubPropertyOf(?x, ?x) for all ?x in
Type(e, ?x), resp. PropertyValue(e, 7x, o)
atoms that do not appear in Qs.
» evaluate first Qs using the SPARQL-DL
engine and for each binding found evaluate
Q. part using the existing ABox query engine

mixed using SPARQL-DL evaluation for all atoms

better performance w.r.t. the query reordering.
® only SPARQL-DL queries with distinguished
variables

Static Query Reordering

» computes cheapest atom ordering in advance. We
choose ordering p* = arg min cost(p, 0), where :

cost(p, length(p)) = 1
cost(p,i) = costxg(pli]) + B(pli]) x cost(p,i+ 1)

Static Query Reordering

» computes cheapest atom ordering in advance. We
choose ordering p* = arg min cost(p, 0), where :

cost(p, length(p)) = 1
cost(p,i) = costxg(pli]) + B(pli]) x cost(p,i+ 1)

costyg ... estimates cost for the dominant KB operation required
to evaluate the atom: noSat, oneSat, classify, realize.

Static Query Reordering

» computes cheapest atom ordering in advance. We
choose ordering p* = arg min cost(p, 0), where :

cost(p, length(p)) = 1
cost(p,i) = costxg(pli]) + B(pli]) x cost(p,i+ 1)

costyg ... estimates cost for the dominant KB operation required
to evaluate the atom: noSat, oneSat, classify, realize.

B ... estimates number of branches generated by the atom
using various KB characteristics, for example :

Static Query Reordering

» computes cheapest atom ordering in advance. We
choose ordering p* = arg min cost(p, 0), where :

cost(p, length(p)) = 1
cost(p,i) = costxg(pli]) + B(pli]) x cost(p,i+ 1)
costygg ... estimates cost for the dominant KB operation required

to evaluate the atom: noSat, oneSat, classify, realize.

B ... estimates number of branches generated by the atom
using various KB characteristics, for example :

costypg(SubclassOf(?x, Person)) = classify
B(SubclassOf(?x, Person)) = #toldSubclasses(Person)

© for short queries is fast and precise enough,

4«0 «F>r « =) 4

>

DA

Static Query Reordering (2)

for short queries is fast and precise enough,

® as it needs to generate and evaluate all query atom
orderings, and thus all permutations, it is useless for
queries longer than as few as 10 atoms,

Static Query Reordering (2)

for short queries is fast and precise enough,

® as it needs to generate and evaluate all query atom
orderings, and thus all permutations, it is useless for
queries longer than as few as 10 atoms,

® cost evaluation of each query ordering is linear in the

query length, but its quality decreases with the number of
distinguished variables.

Down-monotonic Variables (mixed queries)

TBox
Person
TR
‘ Student Employee
UndergraduateStudent ResearchAssistant
Query

.., SubClassOf(?x, Person),

A

BRI

Type(e

,7X),

Down-monotonic Variables (mixed queries)

TBox

n>0 results

‘ Student Employee
UndergraduateStudent ResearchAssistant

Query

.., SubClassOf(?x, Person), ..., Type(e

A

, 7X),

Down-monotonic Variables (mixed queries)

TBox

0 results
B "

] Student Employee ‘

SN

UndergraduateStudent

ResearchAssistant

Query

.., SubClassOf(?x, Person),

A

BRI

Type(e, 7x),

TBox

| Student

I Employee I
IUndergraduateStudent ‘

ResearchAssistant |

Query

ey

SubClassOf(?x, Person)
A

.., Type(e,?x),

DA

Down-monotonic Variables (2)

» during query execution down-monotonic variable is a
class/property variable ?x occuring in a later Type(e, 7x),
or PropertyValue(e, ?x, e) atom.

Down-monotonic Variables (2)

» during query execution down-monotonic variable is a
class/property variable ?x occuring in a later Type(e, 7x),
or PropertyValue(e, ?x, e) atom.

» if subsequent execution finds no results for class C (bound
for 7x) we can safely avoid exploring its subs.

Down-monotonic Variables (2)

» during query execution down-monotonic variable is a
class/property variable ?x occuring in a later Type(e, 7x),
or PropertyValue(e, ?x, e) atom.

» if subsequent execution finds no results for class C (bound
for 7x) we can safely avoid exploring its subs.

» reverse implication does not hold : Finding a binding C for
(down-monotonic) ?x we can not take all subs of C as valid
bindings, for instance :

SubClassOf(?x, C), Type(i, ?x), ComplementOf(?x, not(C))

Down-monotonic Variables (2)

» during query execution down-monotonic variable is a
class/property variable ?x occuring in a later Type(e, 7x),
or PropertyValue(e, ?x, e) atom.

» if subsequent execution finds no results for class C (bound
for 7x) we can safely avoid exploring its subs.

» reverse implication does not hold : Finding a binding C for
(down-monotonic) ?x we can not take all subs of C as valid
bindings, for instance :

SubClassOf(?x, C), Type(i, ?x), ComplementOf(?x, not(C))

useful for ontologies with rich taxonomies.

Benchmarking with LUBM

Find all the graduate students that are related to a course and find what kind
of relationship (e.g. takesCourse):

Type(?x, GraduateStudent), PropertyValue(?x, ?y, ?z), Type(?z, Course)

Find all the students who are also employees and find what kind of employee
(e.9. ResearchAssistant):

Type(?x, Student), Type(?x, ?C), SubClassOf(?C, Employee)

Find all the members of Dept 0 and what kind of membership (e.g.
worksFor, headOf):

Type(?x, Person), PropertyValue(?x, ?y, Dept 0), SubPropertyOf(?y, memberOf)

Experiments (results for LUBM(1))

Time (ms)

2400

2200 1
[Separated Engine

2000 B Mixed Engine

1800 B Mixed Engine with [~

1600 Down Monotonic

Variables

1400

1200

1000

800 |

600 |

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

it
N
»
i)

What Has Been Done - Summary

SPARQL-DL implementation without bnodes in DifferentFrom
atoms to appear in the next Pellet release

» simple preprocessing — getting rid of SameAs atoms with
bnodes

What Has Been Done - Summary

SPARQL-DL implementation without bnodes in DifferentFrom
atoms to appear in the next Pellet release

» simple preprocessing — getting rid of SameAs atoms with
bnodes

» two evaluation strategies — using an existing CAQ engine /
mixed evaluation

What Has Been Done - Summary

SPARQL-DL implementation without bnodes in DifferentFrom
atoms to appear in the next Pellet release
» simple preprocessing — getting rid of SameAs atoms with
bnodes
» two evaluation strategies — using an existing CAQ engine /
mixed evaluation
» optimizations — static query reordering, down-monotonic
variables

» evaluation and optimization of bnodes using the mixed
engine

4«0 «F>r « =) 4

>

DA

» evaluation and optimization of bnodes using the mixed
engine

» moving towards OWL 1.1

«O» «FHr «=>»

<

DA

» evaluation and optimization of bnodes using the mixed
engine

» moving towards OWL 1.1
» different cost functions

«O» «F»

DA

What to Do Next ?

» evaluation and optimization of bnodes using the mixed
engine

» moving towards OWL 1.1

» different cost functions

» dynamic query reordering

What to Do Next ?

» evaluation and optimization of bnodes using the mixed
engine

» moving towards OWL 1.1

» different cost functions

» dynamic query reordering

» more SPARQL stuff — optimized implementation of

SPARQL algebra, like UNION, OPTIONAL, FILTER, etc ...

What to Do Next ?

» evaluation and optimization of bnodes using the mixed
engine

» moving towards OWL 1.1

» different cost functions

» dynamic query reordering

» more SPARQL stuff — optimized implementation of

SPARQL algebra, like UNION, OPTIONAL, FILTER, etc ...

» ...an much more

	What is SPARQL-DL
	Different Perspectives
	SPARQL-DL constructs

	SPARQL-DL Evaluation
	Preprocessing
	Evaluation Strategies
	Optimizations

	Examples

