
SPARQL-DL
Implementation Experience

Petr Křemen1 Evren Sirin2

1Czech Technical University in Prague (CZ)

2Clark & Parsia (US)

April 2008

What is SPARQL-DL
Different Perspectives
SPARQL-DL constructs

SPARQL-DL Evaluation
Preprocessing
Evaluation Strategies
Optimizations

Examples

SPARQL-DL vs. Conjunctive Queries

I query language for OWL-DL ontologies.

I mixed ABox / TBox queries :

SPARQL-DL vs. Conjunctive Queries

I query language for OWL-DL ontologies.
I mixed ABox / TBox queries :

SPARQL-DL vs. Conjunctive Queries

I query language for OWL-DL ontologies.
I mixed ABox / TBox queries :

SPARQL-DL vs. SPARQL

I SPARQL-DL uses SPARQL syntax

I SPARQL-DL provides OWL-DL semantics for SPARQL
basic graph patterns:

Example (SPARQL-DL)
Type(?x , ?t), SubClassOf(?t , Employee),
PropertyValue(?x , teacherOf , : a), PropertyValue(?y , takesCourse, : a).

Example (SPARQL)
SELECT ?t ?x ?y
WHERE {

?x rdf:type ?t .
?t rdfs:subClassOf :Employee.
?x :teacherOf :a .
?y :takesCourse :a .

}

SPARQL-DL vs. SPARQL

I SPARQL-DL uses SPARQL syntax
I SPARQL-DL provides OWL-DL semantics for SPARQL

basic graph patterns:

Example (SPARQL-DL)
Type(?x , ?t), SubClassOf(?t , Employee),
PropertyValue(?x , teacherOf , : a), PropertyValue(?y , takesCourse, : a).

Example (SPARQL)
SELECT ?t ?x ?y
WHERE {

?x rdf:type ?t .
?t rdfs:subClassOf :Employee.
?x :teacherOf :a .
?y :takesCourse :a .

}

SPARQL-DL vs. SPARQL

I SPARQL-DL uses SPARQL syntax
I SPARQL-DL provides OWL-DL semantics for SPARQL

basic graph patterns:

Example (SPARQL-DL)
Type(?x , ?t), SubClassOf(?t , Employee),
PropertyValue(?x , teacherOf , : a), PropertyValue(?y , takesCourse, : a).

Example (SPARQL)
SELECT ?t ?x ?y
WHERE {

?x rdf:type ?t .
?t rdfs:subClassOf :Employee.
?x :teacherOf :a .
?y :takesCourse :a .

}

SPARQL-DL vs. SPARQL

I SPARQL-DL uses SPARQL syntax
I SPARQL-DL provides OWL-DL semantics for SPARQL

basic graph patterns:

Example (SPARQL-DL)
Type(?x , ?t), SubClassOf(?t , Employee),
PropertyValue(?x , teacherOf , : a), PropertyValue(?y , takesCourse, : a).

Example (SPARQL)
SELECT ?t ?x ?y
WHERE {

?x rdf:type ?t .
?t rdfs:subClassOf :Employee.
?x :teacherOf :a .
?y :takesCourse :a .

}

SPARQL-DL Constructs

SPARQL-DL query is a conjunction of atoms:
Type(i , c), PropertyValue(i , p, j) – conjunctive query atoms allowing

distinguished variables in c/ p positions

SameAs(i , j), DifferentFrom(i , j) – OWL individual axiom patterns.

SubClassOf(c, d), EquivalentClass(c, d), DisjointWith(c, d) – OWL class
axiom patterns

ComplementOf(c, d) – pattern for matching class complement (the only
class description construct)

SubPropertyOf(p, q), EquivalentProperty(p, q), InverseOf(p, q)

ObjectProperty(p), DataProperty(p), FunctionalProperty(p)

InverseFunctional(p), Symmetric(p), Transitive(p) – OWL property axiom
patterns

Annotation(i , p, j) – ground atom for matching OWL annotations

. . . + non-monotonic extension – DirectType(i , c), DirectSubClassOf(c, d),
StrictSubClassOf(c, d), DirectSubProperty(p, q),
StrictSubPropertyOf(p, q).

SPARQL-DL Constructs

SPARQL-DL query is a conjunction of atoms:
Type(i , c), PropertyValue(i , p, j) – conjunctive query atoms allowing

distinguished variables in c/ p positions

SameAs(i , j), DifferentFrom(i , j) – OWL individual axiom patterns.

SubClassOf(c, d), EquivalentClass(c, d), DisjointWith(c, d) – OWL class
axiom patterns

ComplementOf(c, d) – pattern for matching class complement (the only
class description construct)

SubPropertyOf(p, q), EquivalentProperty(p, q), InverseOf(p, q)

ObjectProperty(p), DataProperty(p), FunctionalProperty(p)

InverseFunctional(p), Symmetric(p), Transitive(p) – OWL property axiom
patterns

Annotation(i , p, j) – ground atom for matching OWL annotations

. . . + non-monotonic extension – DirectType(i , c), DirectSubClassOf(c, d),
StrictSubClassOf(c, d), DirectSubProperty(p, q),
StrictSubPropertyOf(p, q).

SPARQL-DL Constructs

SPARQL-DL query is a conjunction of atoms:
Type(i , c), PropertyValue(i , p, j) – conjunctive query atoms allowing

distinguished variables in c/ p positions

SameAs(i , j), DifferentFrom(i , j) – OWL individual axiom patterns.

SubClassOf(c, d), EquivalentClass(c, d), DisjointWith(c, d) – OWL class
axiom patterns

ComplementOf(c, d) – pattern for matching class complement (the only
class description construct)

SubPropertyOf(p, q), EquivalentProperty(p, q), InverseOf(p, q)

ObjectProperty(p), DataProperty(p), FunctionalProperty(p)

InverseFunctional(p), Symmetric(p), Transitive(p) – OWL property axiom
patterns

Annotation(i , p, j) – ground atom for matching OWL annotations

. . . + non-monotonic extension – DirectType(i , c), DirectSubClassOf(c, d),
StrictSubClassOf(c, d), DirectSubProperty(p, q),
StrictSubPropertyOf(p, q).

SPARQL-DL Constructs

SPARQL-DL query is a conjunction of atoms:
Type(i , c), PropertyValue(i , p, j) – conjunctive query atoms allowing

distinguished variables in c/ p positions

SameAs(i , j), DifferentFrom(i , j) – OWL individual axiom patterns.

SubClassOf(c, d), EquivalentClass(c, d), DisjointWith(c, d) – OWL class
axiom patterns

ComplementOf(c, d) – pattern for matching class complement (the only
class description construct)

SubPropertyOf(p, q), EquivalentProperty(p, q), InverseOf(p, q)

ObjectProperty(p), DataProperty(p), FunctionalProperty(p)

InverseFunctional(p), Symmetric(p), Transitive(p) – OWL property axiom
patterns

Annotation(i , p, j) – ground atom for matching OWL annotations

. . . + non-monotonic extension – DirectType(i , c), DirectSubClassOf(c, d),
StrictSubClassOf(c, d), DirectSubProperty(p, q),
StrictSubPropertyOf(p, q).

SPARQL-DL Constructs

SPARQL-DL query is a conjunction of atoms:
Type(i , c), PropertyValue(i , p, j) – conjunctive query atoms allowing

distinguished variables in c/ p positions

SameAs(i , j), DifferentFrom(i , j) – OWL individual axiom patterns.

SubClassOf(c, d), EquivalentClass(c, d), DisjointWith(c, d) – OWL class
axiom patterns

ComplementOf(c, d) – pattern for matching class complement (the only
class description construct)

SubPropertyOf(p, q), EquivalentProperty(p, q), InverseOf(p, q)

ObjectProperty(p), DataProperty(p), FunctionalProperty(p)

InverseFunctional(p), Symmetric(p), Transitive(p) – OWL property axiom
patterns

Annotation(i , p, j) – ground atom for matching OWL annotations

. . . + non-monotonic extension – DirectType(i , c), DirectSubClassOf(c, d),
StrictSubClassOf(c, d), DirectSubProperty(p, q),
StrictSubPropertyOf(p, q).

SPARQL-DL Constructs

SPARQL-DL query is a conjunction of atoms:
Type(i , c), PropertyValue(i , p, j) – conjunctive query atoms allowing

distinguished variables in c/ p positions

SameAs(i , j), DifferentFrom(i , j) – OWL individual axiom patterns.

SubClassOf(c, d), EquivalentClass(c, d), DisjointWith(c, d) – OWL class
axiom patterns

ComplementOf(c, d) – pattern for matching class complement (the only
class description construct)

SubPropertyOf(p, q), EquivalentProperty(p, q), InverseOf(p, q)

ObjectProperty(p), DataProperty(p), FunctionalProperty(p)

InverseFunctional(p), Symmetric(p), Transitive(p) – OWL property axiom
patterns

Annotation(i , p, j) – ground atom for matching OWL annotations

. . . + non-monotonic extension – DirectType(i , c), DirectSubClassOf(c, d),
StrictSubClassOf(c, d), DirectSubProperty(p, q),
StrictSubPropertyOf(p, q).

SPARQL-DL Constructs

SPARQL-DL query is a conjunction of atoms:
Type(i , c), PropertyValue(i , p, j) – conjunctive query atoms allowing

distinguished variables in c/ p positions

SameAs(i , j), DifferentFrom(i , j) – OWL individual axiom patterns.

SubClassOf(c, d), EquivalentClass(c, d), DisjointWith(c, d) – OWL class
axiom patterns

ComplementOf(c, d) – pattern for matching class complement (the only
class description construct)

SubPropertyOf(p, q), EquivalentProperty(p, q), InverseOf(p, q)

ObjectProperty(p), DataProperty(p), FunctionalProperty(p)

InverseFunctional(p), Symmetric(p), Transitive(p) – OWL property axiom
patterns

Annotation(i , p, j) – ground atom for matching OWL annotations

. . . + non-monotonic extension – DirectType(i , c), DirectSubClassOf(c, d),
StrictSubClassOf(c, d), DirectSubProperty(p, q),
StrictSubPropertyOf(p, q).

SPARQL-DL Constructs

SPARQL-DL query is a conjunction of atoms:
Type(i , c), PropertyValue(i , p, j) – conjunctive query atoms allowing

distinguished variables in c/ p positions

SameAs(i , j), DifferentFrom(i , j) – OWL individual axiom patterns.

SubClassOf(c, d), EquivalentClass(c, d), DisjointWith(c, d) – OWL class
axiom patterns

ComplementOf(c, d) – pattern for matching class complement (the only
class description construct)

SubPropertyOf(p, q), EquivalentProperty(p, q), InverseOf(p, q)

ObjectProperty(p), DataProperty(p), FunctionalProperty(p)

InverseFunctional(p), Symmetric(p), Transitive(p) – OWL property axiom
patterns

Annotation(i , p, j) – ground atom for matching OWL annotations

. . . + non-monotonic extension – DirectType(i , c), DirectSubClassOf(c, d),
StrictSubClassOf(c, d), DirectSubProperty(p, q),
StrictSubPropertyOf(p, q).

SPARQL-DL Constructs

SPARQL-DL query is a conjunction of atoms:
Type(i , c), PropertyValue(i , p, j) – conjunctive query atoms allowing

distinguished variables in c/ p positions

SameAs(i , j), DifferentFrom(i , j) – OWL individual axiom patterns.

SubClassOf(c, d), EquivalentClass(c, d), DisjointWith(c, d) – OWL class
axiom patterns

ComplementOf(c, d) – pattern for matching class complement (the only
class description construct)

SubPropertyOf(p, q), EquivalentProperty(p, q), InverseOf(p, q)

ObjectProperty(p), DataProperty(p), FunctionalProperty(p)

InverseFunctional(p), Symmetric(p), Transitive(p) – OWL property axiom
patterns

Annotation(i , p, j) – ground atom for matching OWL annotations

. . . + non-monotonic extension – DirectType(i , c), DirectSubClassOf(c, d),
StrictSubClassOf(c, d), DirectSubProperty(p, q),
StrictSubPropertyOf(p, q).

Preprocessing

I getting rid of all SameAs atoms with undistinguished
variables

Example

q1(?x)→ SameAs(: b, ?x), Type(: b,Person)
turns
q2(?x)→ Type(?x ,Person)

I BUT, we cannot perform this simplification for distinguished
variable in SameAs atoms, since there can be several
individuals in KB that are stated to be same.

I removing trivially satisfied atoms is valuable w.r.t. the cost
based reordering

I splitting the query into connected components in order to
avoid computing cross-products of their results.

I queries without DifferentFrom atoms with undistinguished
variables.

Preprocessing

I getting rid of all SameAs atoms with undistinguished
variables

Example

q1(?x)→ SameAs(: b, ?x), Type(: b,Person)
turns
q2(?x)→ Type(?x ,Person)

I BUT, we cannot perform this simplification for distinguished
variable in SameAs atoms, since there can be several
individuals in KB that are stated to be same.

I removing trivially satisfied atoms is valuable w.r.t. the cost
based reordering

I splitting the query into connected components in order to
avoid computing cross-products of their results.

I queries without DifferentFrom atoms with undistinguished
variables.

Preprocessing

I getting rid of all SameAs atoms with undistinguished
variables

Example

q1(?x)→ SameAs(: b, ?x), Type(: b,Person)
turns
q2(?x)→ Type(?x ,Person)

I BUT, we cannot perform this simplification for distinguished
variable in SameAs atoms, since there can be several
individuals in KB that are stated to be same.

I removing trivially satisfied atoms is valuable w.r.t. the cost
based reordering

I splitting the query into connected components in order to
avoid computing cross-products of their results.

I queries without DifferentFrom atoms with undistinguished
variables.

Preprocessing

I getting rid of all SameAs atoms with undistinguished
variables

Example

q1(?x)→ SameAs(: b, ?x), Type(: b,Person)
turns
q2(?x)→ Type(?x ,Person)

I BUT, we cannot perform this simplification for distinguished
variable in SameAs atoms, since there can be several
individuals in KB that are stated to be same.

I removing trivially satisfied atoms is valuable w.r.t. the cost
based reordering

I splitting the query into connected components in order to
avoid computing cross-products of their results.

I queries without DifferentFrom atoms with undistinguished
variables.

Preprocessing

I getting rid of all SameAs atoms with undistinguished
variables

Example

q1(?x)→ SameAs(: b, ?x), Type(: b,Person)
turns
q2(?x)→ Type(?x ,Person)

I BUT, we cannot perform this simplification for distinguished
variable in SameAs atoms, since there can be several
individuals in KB that are stated to be same.

I removing trivially satisfied atoms is valuable w.r.t. the cost
based reordering

I splitting the query into connected components in order to
avoid computing cross-products of their results.

I queries without DifferentFrom atoms with undistinguished
variables.

Preprocessing

I getting rid of all SameAs atoms with undistinguished
variables

Example

q1(?x)→ SameAs(: b, ?x), Type(: b,Person)
turns
q2(?x)→ Type(?x ,Person)

I BUT, we cannot perform this simplification for distinguished
variable in SameAs atoms, since there can be several
individuals in KB that are stated to be same.

I removing trivially satisfied atoms is valuable w.r.t. the cost
based reordering

I splitting the query into connected components in order to
avoid computing cross-products of their results.

I queries without DifferentFrom atoms with undistinguished
variables.

Separated vs. Mixed Evaluation

separated partitioning a SPARQL-DL query Q into the ABox
part Qc (Type and PropertyValue) and Schema
part Qs

I augumenting Qs with SubClassOf(?x , ?x),
resp. SubPropertyOf(?x , ?x) for all ?x in
Type(•, ?x), resp. PropertyValue(•, ?x , •)
atoms that do not appear in Qs.

I evaluate first Qs using the SPARQL-DL
engine and for each binding found evaluate
Qc part using the existing ABox query engine

mixed using SPARQL-DL evaluation for all atoms

, better performance w.r.t. the query reordering.
/ only SPARQL-DL queries with distinguished

variables

Separated vs. Mixed Evaluation

separated partitioning a SPARQL-DL query Q into the ABox
part Qc (Type and PropertyValue) and Schema
part Qs

I augumenting Qs with SubClassOf(?x , ?x),
resp. SubPropertyOf(?x , ?x) for all ?x in
Type(•, ?x), resp. PropertyValue(•, ?x , •)
atoms that do not appear in Qs.

I evaluate first Qs using the SPARQL-DL
engine and for each binding found evaluate
Qc part using the existing ABox query engine

mixed using SPARQL-DL evaluation for all atoms

, better performance w.r.t. the query reordering.
/ only SPARQL-DL queries with distinguished

variables

Separated vs. Mixed Evaluation

separated partitioning a SPARQL-DL query Q into the ABox
part Qc (Type and PropertyValue) and Schema
part Qs

I augumenting Qs with SubClassOf(?x , ?x),
resp. SubPropertyOf(?x , ?x) for all ?x in
Type(•, ?x), resp. PropertyValue(•, ?x , •)
atoms that do not appear in Qs.

I evaluate first Qs using the SPARQL-DL
engine and for each binding found evaluate
Qc part using the existing ABox query engine

mixed using SPARQL-DL evaluation for all atoms

, better performance w.r.t. the query reordering.
/ only SPARQL-DL queries with distinguished

variables

Separated vs. Mixed Evaluation

separated partitioning a SPARQL-DL query Q into the ABox
part Qc (Type and PropertyValue) and Schema
part Qs

I augumenting Qs with SubClassOf(?x , ?x),
resp. SubPropertyOf(?x , ?x) for all ?x in
Type(•, ?x), resp. PropertyValue(•, ?x , •)
atoms that do not appear in Qs.

I evaluate first Qs using the SPARQL-DL
engine and for each binding found evaluate
Qc part using the existing ABox query engine

mixed using SPARQL-DL evaluation for all atoms

, better performance w.r.t. the query reordering.
/ only SPARQL-DL queries with distinguished

variables

Separated vs. Mixed Evaluation

separated partitioning a SPARQL-DL query Q into the ABox
part Qc (Type and PropertyValue) and Schema
part Qs

I augumenting Qs with SubClassOf(?x , ?x),
resp. SubPropertyOf(?x , ?x) for all ?x in
Type(•, ?x), resp. PropertyValue(•, ?x , •)
atoms that do not appear in Qs.

I evaluate first Qs using the SPARQL-DL
engine and for each binding found evaluate
Qc part using the existing ABox query engine

mixed using SPARQL-DL evaluation for all atoms
, better performance w.r.t. the query reordering.

/ only SPARQL-DL queries with distinguished
variables

Separated vs. Mixed Evaluation

separated partitioning a SPARQL-DL query Q into the ABox
part Qc (Type and PropertyValue) and Schema
part Qs

I augumenting Qs with SubClassOf(?x , ?x),
resp. SubPropertyOf(?x , ?x) for all ?x in
Type(•, ?x), resp. PropertyValue(•, ?x , •)
atoms that do not appear in Qs.

I evaluate first Qs using the SPARQL-DL
engine and for each binding found evaluate
Qc part using the existing ABox query engine

mixed using SPARQL-DL evaluation for all atoms
, better performance w.r.t. the query reordering.
/ only SPARQL-DL queries with distinguished

variables

Static Query Reordering

I computes cheapest atom ordering in advance. We
choose ordering p∗ = arg min cost(p, 0), where :

cost(p, length(p)) = 1
cost(p, i) = costKB(p[i]) + B(p[i])× cost(p, i + 1)

costKB . . . estimates cost for the dominant KB operation required
to evaluate the atom: noSat , oneSat , classify , realize.

B . . . estimates number of branches generated by the atom
using various KB characteristics, for example :

Example

costKB(SubclassOf(?x , Person)) = classify
B(SubclassOf(?x , Person)) = #toldSubclasses(Person)

Static Query Reordering

I computes cheapest atom ordering in advance. We
choose ordering p∗ = arg min cost(p, 0), where :

cost(p, length(p)) = 1
cost(p, i) = costKB(p[i]) + B(p[i])× cost(p, i + 1)

costKB . . . estimates cost for the dominant KB operation required
to evaluate the atom: noSat , oneSat , classify , realize.

B . . . estimates number of branches generated by the atom
using various KB characteristics, for example :

Example

costKB(SubclassOf(?x , Person)) = classify
B(SubclassOf(?x , Person)) = #toldSubclasses(Person)

Static Query Reordering

I computes cheapest atom ordering in advance. We
choose ordering p∗ = arg min cost(p, 0), where :

cost(p, length(p)) = 1
cost(p, i) = costKB(p[i]) + B(p[i])× cost(p, i + 1)

costKB . . . estimates cost for the dominant KB operation required
to evaluate the atom: noSat , oneSat , classify , realize.

B . . . estimates number of branches generated by the atom
using various KB characteristics, for example :

Example

costKB(SubclassOf(?x , Person)) = classify
B(SubclassOf(?x , Person)) = #toldSubclasses(Person)

Static Query Reordering

I computes cheapest atom ordering in advance. We
choose ordering p∗ = arg min cost(p, 0), where :

cost(p, length(p)) = 1
cost(p, i) = costKB(p[i]) + B(p[i])× cost(p, i + 1)

costKB . . . estimates cost for the dominant KB operation required
to evaluate the atom: noSat , oneSat , classify , realize.

B . . . estimates number of branches generated by the atom
using various KB characteristics, for example :

Example

costKB(SubclassOf(?x , Person)) = classify
B(SubclassOf(?x , Person)) = #toldSubclasses(Person)

Static Query Reordering (2)

, for short queries is fast and precise enough,

/ as it needs to generate and evaluate all query atom
orderings, and thus all permutations, it is useless for
queries longer than as few as 10 atoms,

/ cost evaluation of each query ordering is linear in the
query length, but its quality decreases with the number of
distinguished variables.

Static Query Reordering (2)

, for short queries is fast and precise enough,
/ as it needs to generate and evaluate all query atom

orderings, and thus all permutations, it is useless for
queries longer than as few as 10 atoms,

/ cost evaluation of each query ordering is linear in the
query length, but its quality decreases with the number of
distinguished variables.

Static Query Reordering (2)

, for short queries is fast and precise enough,
/ as it needs to generate and evaluate all query atom

orderings, and thus all permutations, it is useless for
queries longer than as few as 10 atoms,

/ cost evaluation of each query ordering is linear in the
query length, but its quality decreases with the number of
distinguished variables.

Down-monotonic Variables (mixed queries)

TBox

Query

. . . , SubClassOf (?x , Person), . . . , Type(•, ?x), . . .
N

Down-monotonic Variables (mixed queries)

TBox

Query

. . . , SubClassOf (?x , Person), . . . , Type(•, ?x), . . .
N

Down-monotonic Variables (mixed queries)

TBox

Query

. . . , SubClassOf (?x , Person), . . . , Type(•, ?x), . . .
N

Down-monotonic Variables (mixed queries)

TBox

Query

. . . , SubClassOf (?x , Person), . . . , Type(•, ?x), . . .
N

Down-monotonic Variables (2)

I during query execution down-monotonic variable is a
class/property variable ?x occuring in a later Type(•, ?x),
or PropertyValue(•, ?x , •) atom.

I if subsequent execution finds no results for class C (bound
for ?x) we can safely avoid exploring its subs.

I reverse implication does not hold : Finding a binding C for
(down-monotonic) ?x we can not take all subs of C as valid
bindings, for instance :

SubClassOf(?x , C), Type(i , ?x), ComplementOf(?x , not(C))

, useful for ontologies with rich taxonomies.

Down-monotonic Variables (2)

I during query execution down-monotonic variable is a
class/property variable ?x occuring in a later Type(•, ?x),
or PropertyValue(•, ?x , •) atom.

I if subsequent execution finds no results for class C (bound
for ?x) we can safely avoid exploring its subs.

I reverse implication does not hold : Finding a binding C for
(down-monotonic) ?x we can not take all subs of C as valid
bindings, for instance :

SubClassOf(?x , C), Type(i , ?x), ComplementOf(?x , not(C))

, useful for ontologies with rich taxonomies.

Down-monotonic Variables (2)

I during query execution down-monotonic variable is a
class/property variable ?x occuring in a later Type(•, ?x),
or PropertyValue(•, ?x , •) atom.

I if subsequent execution finds no results for class C (bound
for ?x) we can safely avoid exploring its subs.

I reverse implication does not hold : Finding a binding C for
(down-monotonic) ?x we can not take all subs of C as valid
bindings, for instance :

SubClassOf(?x , C), Type(i , ?x), ComplementOf(?x , not(C))

, useful for ontologies with rich taxonomies.

Down-monotonic Variables (2)

I during query execution down-monotonic variable is a
class/property variable ?x occuring in a later Type(•, ?x),
or PropertyValue(•, ?x , •) atom.

I if subsequent execution finds no results for class C (bound
for ?x) we can safely avoid exploring its subs.

I reverse implication does not hold : Finding a binding C for
(down-monotonic) ?x we can not take all subs of C as valid
bindings, for instance :

SubClassOf(?x , C), Type(i , ?x), ComplementOf(?x , not(C))

, useful for ontologies with rich taxonomies.

Benchmarking with LUBM

Example (Q1 – Variables in property position)
Find all the graduate students that are related to a course and find what kind
of relationship (e.g. takesCourse):

Type(?x ,GraduateStudent), PropertyValue(?x , ?y , ?z), Type(?z,Course)

Example (Q2 – Mixed ABox/TBox query)
Find all the students who are also employees and find what kind of employee
(e.g. ResearchAssistant):

Type(?x ,Student), Type(?x , ?C), SubClassOf(?C,Employee)

Example (Q3 – Mixed ABox/RBox query)
Find all the members of Dept0 and what kind of membership (e.g.
worksFor, headOf):

Type(?x ,Person), PropertyValue(?x , ?y ,Dept0), SubPropertyOf(?y ,memberOf)

Experiments (results for LUBM(1))

What Has Been Done - Summary

SPARQL-DL implementation without bnodes in DifferentFrom
atoms to appear in the next Pellet release

I simple preprocessing – getting rid of SameAs atoms with
bnodes

I two evaluation strategies – using an existing CAQ engine /
mixed evaluation

I optimizations – static query reordering, down-monotonic
variables

What Has Been Done - Summary

SPARQL-DL implementation without bnodes in DifferentFrom
atoms to appear in the next Pellet release

I simple preprocessing – getting rid of SameAs atoms with
bnodes

I two evaluation strategies – using an existing CAQ engine /
mixed evaluation

I optimizations – static query reordering, down-monotonic
variables

What Has Been Done - Summary

SPARQL-DL implementation without bnodes in DifferentFrom
atoms to appear in the next Pellet release

I simple preprocessing – getting rid of SameAs atoms with
bnodes

I two evaluation strategies – using an existing CAQ engine /
mixed evaluation

I optimizations – static query reordering, down-monotonic
variables

What to Do Next ?

I evaluation and optimization of bnodes using the mixed
engine

I moving towards OWL 1.1
I different cost functions
I dynamic query reordering
I more SPARQL stuff – optimized implementation of

SPARQL algebra, like UNION, OPTIONAL, FILTER, etc . . .
I . . . an much more

What to Do Next ?

I evaluation and optimization of bnodes using the mixed
engine

I moving towards OWL 1.1

I different cost functions
I dynamic query reordering
I more SPARQL stuff – optimized implementation of

SPARQL algebra, like UNION, OPTIONAL, FILTER, etc . . .
I . . . an much more

What to Do Next ?

I evaluation and optimization of bnodes using the mixed
engine

I moving towards OWL 1.1
I different cost functions

I dynamic query reordering
I more SPARQL stuff – optimized implementation of

SPARQL algebra, like UNION, OPTIONAL, FILTER, etc . . .
I . . . an much more

What to Do Next ?

I evaluation and optimization of bnodes using the mixed
engine

I moving towards OWL 1.1
I different cost functions
I dynamic query reordering

I more SPARQL stuff – optimized implementation of
SPARQL algebra, like UNION, OPTIONAL, FILTER, etc . . .

I . . . an much more

What to Do Next ?

I evaluation and optimization of bnodes using the mixed
engine

I moving towards OWL 1.1
I different cost functions
I dynamic query reordering
I more SPARQL stuff – optimized implementation of

SPARQL algebra, like UNION, OPTIONAL, FILTER, etc . . .

I . . . an much more

What to Do Next ?

I evaluation and optimization of bnodes using the mixed
engine

I moving towards OWL 1.1
I different cost functions
I dynamic query reordering
I more SPARQL stuff – optimized implementation of

SPARQL algebra, like UNION, OPTIONAL, FILTER, etc . . .
I . . . an much more

	What is SPARQL-DL
	Different Perspectives
	SPARQL-DL constructs

	SPARQL-DL Evaluation
	Preprocessing
	Evaluation Strategies
	Optimizations

	Examples

