
Improving the Data Quality of Relational

Databases using OBDA and OWL 2 QL

Olivier Curé

Université Paris-Est, IGM Terre Digitale, Marne-la-Vallée, France
olivier.cure@univ-paris-est.fr.fr

1 Introduction

The Semantic Web aims to enable the integration and sharing of data across
different applications and organizations. A first step toward reaching this goal is
a closer cooperation between the best technology to deal with large volumes of
data, i.e. currently relational DBMS, and ontologies. The Ontology-Based Data
Access (OBDA) approach [7] tackles this issue by providing a conceptual view
over data repositories and inference enabled query answering solutions. OBDA is
based on the DL–Lite family of Description Logics (DL) [2] which have inspired
the OWL 2 QL profile.

In this paper, we consider a novel aspect of OBDA systems: their reasoning
services and query answering solutions could be used to improve the data quality
of the source databases. This can be performed by checking the satisfaction of
a set of constraints over database instances. Although many attempts to add
constraints to OWL ontologies have been proposed, few of them apply to the
OBDA context.

In this work, we consider novel data dependencies that have recently been
introduced in the database domain [5]: Conditional Dependencies (CDs). They
correspond to Conditional Functional Dependencies (CFDs) and Conditional
Inclusion Dependencies (CINDs) and are conditional counter part of respectively
functional and inclusion dependencies (henceforth FDs and INDs). Intuitively,
CDs hold only for the tuples that satisfy some conditions and are supposed to
capture more of the inconsistencies of real-life data. We claim that inferences
performed in the context of OBDA provide a more compact, and thus efficient,
representation of these CDs. Two main problems associated to CDs are their
discovery and their representation.

In the context of relational DBMS, several techniques have recently been
proposed to discover ([6] for CFDs and [4] for CINDs) and represent (via SQL
queries) these CDs. Concerning discovery, we claim that it is more efficient to
discover CDs directly from the database sources and thus enjoying existing op-
timized implementations. Concerning representation, since OWL 2 QL does not
support the introduction of individual names in concept descriptions, we also
adopted a query representation. Since most OBDA systems do not support nega-
tion as failure patterns in SPARQL (i.e. through the introduction of negation
and bound operators), we have selected the SparSQL epistemic query language

Rinke Hoekstra
Proceedings of OWL: Experiences and Directions 2009 (OWLED 2009),
Rinke Hoekstra and Peter F. Patel-Schneider, editors. http://www.webont.org/owled/2009

Rinke Hoekstra

Rinke Hoekstra

[3]. Thus CDs are provided by an external solution and we need to translate them
in SparSQL. In order to obtain a minimal set of these queries, this translation
exploits standard DL reasoning services, i.e. concept subsumption.

2 Conditional Dependencies

In this section, we present the syntax and semantics of CFDs and CINDs which
are respectively extension of standard FDs and INDs with patterns.

A CFD ψ defined on a relation R is a pair R(X → Y, Tp) where X and Y

are attribute sets in R, X → Y is a standard FD [1] and Tp is a pattern tableau
containing all attributes in X and Y . The sets X and Y are of the same arity
and for each attribute A in (X ∪ Y), the value of the attribute A of the tuple tp

in Tp, denoted tp[A] is either a value from the domain of A or a variable denoted
by ’ ’. A tuple t matches a tuple tp in Tp if for each attribute A in Tp, for some
constant ’a’, t[A] = tp[A] =’a’ or tp[A] =’ ’.

An instance D of R satifies the CFD ψ, denoted D |= ψ, if for every pair of
tuples t1 and t2 in D, and for each pattern tuple tp in Tp, if t1[A] = t2[A] for
every attribute A in X, and both t1 and t2 match tp[A], then t1[B] = t2[B] and
t1, t2 both match tp[B] for each attribute B in Y .

A CIND φ defined over a pair of relations R1 and R2 is a pair (R1(X; Xp) ⊆
R2(Y ;Yp), Tp) where X, Xp and Y, Yp are attribute sets of R1 and R2 respectively,
R1(X) ⊆ R2(Y) is a standard IND [1] and Tp is a pattern tableau of φ with
attribute sets Xp and Yp such that each pattern tuple tp and each attribute B
in Xp (or Yp), tp[B] is a constant in the domain of B.

An instance (D1,D2) of (R1, R2) satisfies the CIND φ, denoted (D1,D2) |= φ,
iff for each tuple tp in Tp and for each t1 in D1, if t1[Xp] = tp[Xp], then there
must exist t2 in D2 such that t1[X] = t2[Y] and t2[Yp] = tp[Yp].

Example 1: To illustrate these CDs, let us consider the following relational
schema for book, cd and dvd data: dvd(iddvd, artist, title, type ,label, region),
cd(idcd, artist, title, type ,label) and book(isbn, author, title, format, editor).
In the following CDs, we represent pattern tableaux as sets of tuples where the
attributes sets X and Y of a CFD (resp. (X;Xp) and (Y ;Yp) of a CIND) are
delimited by the symbol ’�’:
ψ1 = cd(label → type, {(�bluenote���jazz�), (�DeutscheGramophon���classic�)}
φ1 = cd(title, label; type) ⊆ book(title, author; format), {� �, �,� audiobook��
� �, �,� audio�}

Here, the first tuple in ψ1’s T1 asserts that all cd tuples that have a ’Blue
note’ label must have a ’jazz’ type. Interestingly, this condition also applies to
the dvd relation, i.e. all Blue Note dvds have a ’jazz’ type. φ1 states that for
each tuple in the cd relation with an ’audiobook’ type, there must exits a book
tuple with the same artist and title values and an ’audio’ format.

3 System Description

Our OBDA system corresponds to a triple O = �T ,M,D� where T is a TBox
formalized in OWL 2 QL, D is relational database and M is a set of mapping
assertions between T and D. The mapping assertions support the extraction of
the data from D to populate an ABox associated to the TBox T . They take
the form of Global Local As View (GLAV) mappings where the left handside
of the assertion is a SQL query and the right handside is a conjunctive query
over ontology entities. In the following mapping example, the getcd identifica-
tion function enables to associate data stored in the relation to objects in the
ontology:
SELECT idcd, artist,title, � Cd(getcd($idcd)),title(getcd($idcd),$title),
type, label FROM cd artist(getcd($idcd),$artist), type(getcd($idcd),$type),

label(getcd($idcd),$label)
In our running example, the TBox T corresponds to:
AudioDocument � Document Dvd � AudioDocument

NonAudioDocument � Document Cd � AudioDocument

NonAudioDocument �AudioDocument � ⊥ Book � NonAudioDocument

Since the existential quantification to an individual or a literal and the enu-
meration of individuals or literals are not supported in OWL 2 QL, we need
to represent the CDs with queries supported in OBDA. With these queries, we
are not only interested in checking the satisfiability of a knowledge w.r.t. a set
of CDs but we would also like to identify those tuples that do not satisfy a
given CD. Thereby a form of negation is required in the query language. This
is not compatible with the following OBDA restriction: queries posed over the
ontology must correspond to union of conjunctive queries. This is motivated by
maintaining LOGSPACE data complexity of query answering in OBDA and al-
lows delegating reasoning on data to a RDBMS. Nevertheless, in [3] the authors
propose an epistemic query language called SparSQL which satisfies our needs.

Another issue concerns CD discovery. Should it be discovered from the RDBMS
or from the ontology? Since the generation of the pattern tableaux imposes to
mine a database instance, we consider that it is more efficient to directly search
for CDs at the RDBMS level. This is mainly due to the query answering pro-
cess of OBDA which requires several steps, i.e. query expansion, unfolding and
evaluation, and which would make a ontology-based discovery less computation-
ally efficient. Additionally, complete, sound and optimized discovery algorithms
are available for both CFDs [6] and CINDs[4] in a relational context. Thus an
external solution provides sets of CFDs and CINDs and we need to translated
them into SparSQL queries. A desirable feature of this translation is to compact
these CDs using the DL concept subsumption reasoning service.

Our translation technique works as follows: for each CFD (resp. CIND) we
use the mappings to search for the property mapped to each attribute in X and
Y (resp. X,Xp, Y, Yp for CINDs). This is performed by selecting the mapping
assertions whose SQL queries contain these attributes as distinguished variables,
hence they must be mapped to ontology elements. Then we search for the con-
cepts associated to these properties using the identification functions, e.g. getcd.

Given this concept/relation binding, we can compact CDs that have common
attribute sets and then search for the most common specific super concept. This
is performed by assuming a covering constraint over subconcepts and using a
standard DL reasoner. A straightforward generation of SparSQL queries termi-
nates the transalation. For instance, the pattern tableau ψ1 can be generalized,
given our TBox, to both the Cd and Dvd concepts which are subsumed by
AudioDocument. Thus we can generate the following SparSQL query which
identifies cd and dvd tuples that violate this tableau:
SELECT q1.item FROM sparqltable (SELECT ?item ?type ?label WHERE
{?item rdf:type ’AudioDocument’. ?item :typ ?type. ?item :label ?label}) q1
WHERE q1.label LIKE ’Blue note’ and q1.type NOT LIKE ’jazz’

Similarly, the following query identifies book tuples violating φ1:
SELECT q1.book FROM sparqltable (SELECT ?book ?format
WHERE { ?book rdf:type ’Book’. ?item rdf:type ’AudioDocument’.
?item :label ?label. ?book :editor ?label. ?item :typ ’audio book’.
?book :format ?format.}) q1 WHERE q1.format NOT LIKE ’audio’

4 Discussion

This paper proposes a first approach to improve the data quality of relational
databases via the introduction of conditional dependencies in an OBDA sys-
tem. A prototype implementation has been developed using QuOnto, Mastro–I

and recording the SparSQL queries in Protégé4OBDA plugin. It consists of an
’on-demand’ solution which due to compactness of CDs enables an efficient iden-
tification of violating tuples and an easier maintenance of these dependencies by
domain experts. We consider that this is not ideal and we are working on a
trigger-based solution that would enable the processing of the right SparSQL

query when a given relation is updated.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

3. C. Corona, E. D. Pasquale, A. Poggi, M. Ruzzi, and D. F. Savo. When dl-lite met
owl.... In C. Dolbear, A. Ruttenberg, and U. Sattler, editors, OWLED, volume 432
of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

4. O. Curé. Conditional inclusion dependencies for data cleansing: Discovery and
violation detection issues. In QDB’09, To appear.

5. W. Fan. Dependencies revisited for improving data quality. In PODS, pages 159–
170, 2008.

6. W. Fan, F. Geerts, L. V. S. Lakshmanan, and M. Xiong. Discovering conditional
functional dependencies. In ICDE, pages 1231–1234, 2009.

7. A. Poggi, D. Lembo, D. Calvanese, G. D. Giacomo, M. Lenzerini, and R. Rosati.
Linking data to ontologies. J. Data Semantics, 10:133–173, 2008.

