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Abstract. Temporal class as a design primitive for knowledge engineering 
allows for natural representation of evolving concepts of a domain. The paper 
proposes arguments to employ temporal entities (classes, axioms, ontologies) as 
first-class citizens in the Semantic Web applications. The paper presents an 
informal description of one temporal extension of a subset of OWL to deal with 
temporal classes — OWL-MeT, based on the combination of metric temporal 
logic and basic description logic with nominals, !"#-$%&'. Described are the  
solutions proposed and the open issues of such a temporal extension.  

Introduction and Use Cases 

Temporal logics are successfully used for verification of the dynamic systems, e.g. in 
software and hardware development. Application of temporal logics to the Semantic 
Web applications is now limited due to the lack of standards on temporal ontology 
languages and of the reasoning support.  

The palette of the use cases utilizing temporal description logics is naturally 
divided into those cases where usage of temporal concepts allows capturing more (or 
even all) semantics implicit, and those where temporal concepts and/or axioms serve 
as a new solution of a known problem. 

Use case 1. Natural semantics of a dynamic concept. As noted in [1] it is a common 
situation when an obvious dynamic concept is modeled statically, hiding or (worse) 
loosing substantial information about a dynamic concept behavior. 

A lot of theoretical examples, including the discussion on the precise definition of 
a Mortal in [2] show that adding temporal concept constructors to the ontology 
language enable definition of dynamic concepts. 

Use case 2. Ontology evolution analysis. There are several complementing 
approaches for the problem of ontology evolution analysis. First of all, such kind of 
analysis can be focused on structural changes occurring in the elements of the 
ontology during its lifetime. Well-known tools and plug-ins, including PROMPTDIFF 
(and Prompt Tab in Protégé), OntoView, Changes Tab in Protégé, allow to store, 
view, seek and analyze the consequences of structural changes. The critique of 
structural change analysis is also known, it was discussed in [3] and [4]. To sum up, if 
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there is no version log, usage of heuristics does not provide 100% correct detection of 
changes, and if the version log exists, the results of change detection procedures can 
be interpreted differently, and it will be better to write own procedures to look for 
particular changes across the version log. 

Another approach is the analysis of logical changes. The discussion of logical 
compatibility of ontology versions was initiated in [5]. Here we envisage two use 
cases. First, the user may want to see the logical difference in addition to / instead of 
structural one. The steps in this direction are already made, for example, CEX 
algorithm [6] that calculates the logical difference between two acyclic EL-
terminologies. Second, the user may want to pose (via some Web service) a query to 
an ontology provider server, involving old and new terms and see the result. Such a 
service might be an external part of the ontology version control system. Types of 
queries may include subsumption, equivalence, disjointness of old and new terms, 
entailment of facts from the new ontology with respect to the old terms etc. It’s 
important to say that such queries are naturally extended not only to two ontology 
versions, but also to several versions. And here we face with the formalism to 
describe such queries – it should at least address versions, support the elements of the 
ontology language, support the definition of the axioms, having elements from 
different versions. One known solution for such type of logical analysis of evolution 
is realized in MORE framework [7], where queries on different versions of ontology 
were encoded in XML using temporal tags like “previous version” or similar. 

In the light of temporal logic approach, the formal description of the task of logical 
analysis of ontology evolution can be as follows. 

Given a set of ontology versions }{
ktO  and a time structure ,T , the 

temporalized ontology can be defined as  ,,}{ TO Ttt kk
.  In the simplest case a 

set of version is linearly ordered, and the correspondent time structure is isomorphic 
to ,Z . Let L  be a temporal description logic language, able to describe 
temporalized ontology. A model of L  is M IRR PF },,{, , where 

},{ Zkk , each k  represents the domain of the interpretation of ktO , FR  and 

PR  are temporal accessibility relations and interpretation )(,)( kIkkI . Each 

ontology version has a model in k . Then answering a general type query 
)(LWFF  over the set of ontology versions is the model checking problem, 

M |= .  
Temporal concept constructors in the temporal description logic enable the 

following queries for logical evolution analysis. 
Type 1. Presence of an atomic concept A or complex (non-temporalized) concept E 

in a version kt  (positive answer means A (or E) has a model in the ontology version). 
M |= A@{ kt }  M |= E@{ kt }, 

where E is constructed with the help of (, ), ¬. 

Due to the open world assumption, applicable to OWL as ontology language, 
straightforward interpretation of such query allows arbitrary concept A be satisfiable 
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in the ontology, even if that concept is not defined in the ontology. Additional actions 
should be taken to “close” the domain k . 

Type 2. Presence of a complex (non-temporalized) concept E in a version defined 
relatively to a version kt  (n versions before/after, in some version before/after, in all 
versions before/after). 

M |= modality E @{ kt }, 
where modality is one of temporal operators like “somepast”, “allfuture” etc. 
Type 3. Truth of a temporal formula of the general form relative to the ontology 

versions set.  
M |=  

Use Case 3. Temporal conceptual modeling. Temporal description logics are known 
to be an instrument for conceptual modeling of dynamic information [8], [9]. 
Investigated are several tractable logics, among them is TDL-Litebool  [9], expressive 
enough to translate temporal conceptual models into the set of logic formulae. 

It was shown in [10] that UML class diagrams and ER models can be translated to 
the description logic DL-Litebool. Entities can be mapped into concept names, 
hierarchy of entities into subsumption axioms, n-ary relationships are reified etc. It 
should be pointed that DL-Litebool enables general concept inclusions (GCI) that allow 
complex concepts be subsumed by or equivalent to other concepts. TDL-Litebool 
converts a subsumption axiom C *#D, where C and D are time-independent, to the 
form allfuture(C *# D) (#### allpast(C *# D).  

The three use cases described show different required levels of interoperation 
between temporal and non-temporal part of a temporal description logic language.  

OWL+Time=? 

Time-related issues in the Semantic Web applications are usually modeled using 
different formalisms, RDF-based or OWL-based [11]: reification, versioning, 4D-
fluents, and temporal logics. 

Known solutions on the level of OWL are versioning and fluents [12], on the RDF 
level – temporal RDF graphs [13] reified using OWL-Time [14].  

The semantics of practical temporal description logic language enable non-
redundant definition of a dynamic concept. Non-redundancy here means that all the 
temporal semantics is encoded in such language constructs, supported with the 
reasoning engine, and no additional action is needed, except for proper definition of 
the dynamic concept. 

Steps towards practical implementation of temporal ontology languages based on 
temporal logic are made recently. Temporal description logics known in the literature 
explore interval-based or point-based, linear or branching time structures, assume 
domain of time be concrete or abstract. The detailed survey of decidability and 
complexity of reasoning for various temporal extensions of description logics for 
point-based time structure is presented in [15].  



4      Natalya Keberle 

Depending on the time structure, already known are at least three different 
temporal languages, based on the combination of temporal and description logics, 
described in the abstract syntax.  

TL-OWL – is the implementation of the known language "%-+,'-.(/), based 
on "%-$%&0 [16] for interval-based time structure is presented in [17]. The language 
has the abstract and the exchange syntax defined, together with the model semantics. 
The authors have also proved the decidability of "%-+,'-.(/).  

TOWL [18] proposes to present time as a concrete domain over real numbers with 
binary predicates ,,, .  

OWL-MeT [4] – is the implementation of the language !"-$%&' for point-
based time structure. The language has the abstract and the exchange syntax1, RDF 
semantics defined.  

Both TL-OWL and OWL-MeT do not apply temporal operators to the axioms and  
provide various temporal restrictions, although different for interval-based and point-
based time structures. For example, OWL-MeT allows application of temporal 
operators to concepts (thus making temporal concepts from non-temporal ones), 
whereas in TL-OWL temporal relations (“before”, “during” etc.) are applicable only 
to temporal variables, which in turn are binded to non-temporal concepts.  

Without claiming to be the best solution, OWL-MeT was realized in practice. The 
details and open issues of the realization are discussed in the next session.  

Realization 

The experimental realization of a reasoning support for OWL-MeT was made as the 
extension of Pellet [19] reasoning engine, called Pellet-MeT2. The logic underlying 
OWL-MeT, !"-$%&', is defined over linear infinite to the future and to the past 
time line. Correspondent time structure is ,Z , where Z  is the set of integers, and  

 is reflexive and transitive precedence relation.  
The DL-part of the logic is weaker then OWL Lite, particularly in axiomatization 

of roles. The roots of such simplification are as follows: the first lies in the 
complexity/decidability issues related to the usage of roles in temporal description 
logics, and the second is the attempt to incrementally complicate the interoperation of 
temporal and description logic and to analyze the behavior of the reasoner, having in 
mind the results of others [20]. 

Let A  denote atomic non-temporal concepts, R  – atomic role, FE,  – complex 
non-temporal concepts, DC,  – complex temporal concept, }{o  – object nominal 
(denoting an individual in some possible world), }{a  – temporal nominal (denoting 
possible world, e.g. a point on a time line). Then the rules presented in the Fig.1 
generate complex concepts. 

 
 
                                                           

1 The complete syntactical definitions can be found at http://ermolayev.com/owl-met/ 
2 Pellet-MeT is available at http://ermolayev.com/owl-met/reasoner.htm 
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E, F  A   top  bottom  E ( F  E ) F   E  R. E  R. E  }{o   
C, D  E  }{a  C intersection D  C union D  not C | C@ }{a  future n C   

   past n C  somefuture C  somepast C  allfuture C  allpast C 

Fig. 1. Syntax rules for concepts/roles construction. 

If C and D are temporal concepts, then C equivalent D, C subclassof D are 
temporal formulae. If  and  are temporal formulae, then  union , 

 intersection , not  are also temporal formulae. 
!"-$%&' is interpreted over Kripke model M VIRRdist PF ,},,{,, , where 

},{ Zkk  is a set of possible worlds, k  is a set of individuals in k-th possible 
world, }0{: Ndist  is a metric on , PF RR ,  are accessibility relations, I  
is an interpretation function, and V  is a hybrid valuation function. Interpretation I  
associates with each k  an $%&'-interpretation )(,)( kIkkI . Function 

Zaden }{:  encodes temporal nominals into integers. For a temporal nominal }{a , 
hybrid valuation V assigns }{a  a unique world )(aden  - singleton subset of . 

RDF serialization of OWL-MeT. Temporal classes and temporal restrictions 
(unnamed classes) are defined with: 

 
owlmet:TClass  rdf:type  rdf:resource . 
owlmet:TRestriction  rdf:type  rdf:resource; 
   rdfs:subClassOf owlmet:TClass . 
 
All non-temporal classes are actually also temporal (see Fig.1): 
 
owl:Class rdfs:subClassOf owlmet:TClass . 
 
This statement needs some clarification. In OWL-MeT each non-temporal class A 

can be defined as future 0 A (at 0 moments to the future A). Temporal nominals, 
defining particular time moments on a time line are presented as owlmet:Instant: 

 
owlmet:Instant rdf:type  rdf:resource; 
   rdfs:subClassOf owlmet:TClass . 
 
Temporal operators, such as owlmet:allfuture, owlmet:at, owlmet:happens are 

defined as instances of rdf:property: 
 
owlmet:allfuture rdf:type   rdf:property; 
   rdfs:domain owlmet:TRestriction; 
   rdfs:range owlmet:TClass . 
owlmet:at  rdf:type  rdf:property; 
   rdfs:domain owlmet:TRestriction; 
   rdfs:range owlmet:Instant . 
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owlmet:happens rdf:type  rdf:property; 
   rdfs:domain owlmet:TRestriction; 
   rdfs:range owlmet:TClass . 

Reasoning support for OWL-MeT. The main reasoning task for Pellet-MeT is 
checking the consistency of a temporalized ontology. Temporalized ontologies here 
are considered as sets of TBox axioms having temporal concepts both on the left and 
the right parts. Additionally, a time structure can be defined as a finite set of temporal 
nominals, ordered with precedence order. When a time structure is defined, the 
reasoner uses the temporal nominals and its order during the completion procedure, 
and may stop the completion if some completion rule requires introduction of a new 
time moment. Absence of the time structure forces the reasoner to check the 
consistency of a temporalized ontology over the infinite time line.  

The loading procedure of a temporalized ontology includes parsing of temporal 
constructs in addition to OWL parsing, search for a time structure, construction of a 
TBox and an ABox. The TBox is then undergoing the standard procedures of 
normalization and internalization. Specific features of hybrid and metric temporal 
operators of OWL-MeT allow normalization of some combinations of temporal 
operators (see [21]). 

Consistency checking of a temporalized ontology starts with satisfiability checking 
of every concept found in the temporalized ontology. For each concept C an Abox 

Cx : is introduced. Predefined temporal nominal }{now  corresponds to the initial 
time moment. Tableau rules are divided into description logic tableau rules and 
temporal/hybrid rules. Rules for $%&'-part remain the same as for description logic. 

Hybrid extension of tableau rules creates for each temporal nominal }{a  presented in 
a given OWL-MeT formula a particular tableau, and establishes accessibility relations 
between these tableaux depending on values of )(aden . Metric extension of tableau 
rules is presented as movement across the tableaux sequence using the accessibility 
relations, as well as creation of a particular tableau. Completion procedure for an 
ABox stops in a standard way: either finding a clash in some time moment, or in 
obtaining consistent and complete tableau. 

Open issues. There were discovered several open issues that require specific 
attention. They are mainly connected with the classification procedure and time 
structure definition.  

At first, subsumption axioms for temporal concepts define the hierarchy of 
temporal concepts. Every hierarchy needs a root node, and in general, a root node for 
all temporal classes. The choices can be owlmet:TemporalThing, having owl:Thing as 
a subclass, and vice versa, owl:Thing can have owlmet:TemporalThing as the 
subclass. If (and this is proposed in OWL-MeT) every owl:Class is a subclass of 
owlmet:TClass, then owlmet:TemporalThing will subsume owl:Thing. The same 
issue arises for the concepts owl:Nothing and owlmet:TemporalNothing.  

At second, depending on the choice of the root for all temporal classes, the 
classification procedure may behave differently, trying to classify a temporalized 
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ontology where both temporal and non-temporal classes are defined. Temporal class 
has a model in several static domains, whereas non-temporal classes have models in a 
static domain. With point-based time structure defined explicitly, the classification 
may be done after splitting of temporal classes into groups of non-temporal classes 
belonging to the same (static) domain, addressed with a temporal nominal. Then each 
group can be classified separately. Another way is to follow the classification 
procedure for OWL, with owlmet:TemporalThing instead of owl:Thing as a root 
node. 

At third, researchers in the temporal description logics field outline the importance 
of the properties of a time structure such as linearity/branching, infinity, density etc. 
The behavior of the underlying logic depends heavily on the combination of these 
properties. It may be possible to declaratively define the properties of a time structure 
in the temporalized ontology. 

Conclusions 

Temporal description logic without application of temporal operators to the axioms 
and allowing temporal classes may verify the hierarchies of time-dependent entities of 
a temporal conceptual model, describe dynamic concepts of a domains, serve as a 
language for evolution analysis. Continuous research in the theoretical backgrounds 
of temporal description logics gives certainty that practical implementation of 
different OWL-based temporal languages is not far off. Starting from simple and 
obvious languages and reasoning strategies the common grounding for consistent and 
practical research in the field can be find.  

The directions for future research include the development of the formalism for the 
description of temporalized axioms, alternative sets of temporal operators (until/since, 
until/next and others) in addition to metric ones, more rigorous description of a time 
structure. 
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