
The OWL API: A Java API for Working with

OWL 2 Ontologies

Matthew Horridge1, Sean Bechhofer1

The University of Manchester, UK

Abstract. This paper presents the OWL API a high level Application
Programming Interface (API) for working with OWL 2 ontologies. The
API is closely aligned with the OWL 2 structural specification. It sup-
ports parsing and rendering in the syntaxes defined in the W3C specifi-
cation, namely, the Functional Syntax, RDF/XML, OWL/XML and the
Manchester OWL Syntax. Finally, the reference implementation of the
API, which is written in Java, includes validators for the various OWL
2 profiles - OWL 2 QL, OWL 2 EL and OWL 2 RL.

1 Introduction

Aside from the fact the OWL is a W3C Recommendation [15], one of the proba-
ble reasons for its success and relatively broad adoption in academia and industry
is that there have been a wide range of OWL tools available. These tools have
supported the creation and editing of OWL ontologies, reasoning over ontologies,
and using ontologies in applications. Generally speaking, all of these tools require
some kind of underlying API that allow ontologies to be loaded, manipulated
and queried. In the case of ontology editors, such as Protégé-4 [7], the NeOn
Toolkit [6], Swoop [10], TopBraid Composer1 and OWLSight2, it is usually a ne-
cessity to have some mechanism to load ontologies in various concrete formats,
along with clean mechanisms to manipulate and modify ontologies. With regard
to reasoning, client applications usually require general purpose reasoner inter-
faces so that they can easily swap in and out different reasoner implementations.
On the other side of the coin, reasoner developers can benefit from being able
to provide a well known interface to their reasoners.

The latest version of the OWL API has been designed to meet the needs of
people developing OWL based applications, OWL editors and OWL reasoners.
It is a high level API that is closely aligned with the OWL 2 specification. It
includes first class change support, general purpose reasoner interfaces, validators
for the various OWL 2 profiles, and support for parsing and serialising ontologies
in a variety of syntaxes. The API also has a very flexible design that allows third
parties to provide alternative implementations for all major components.

The purpose of this paper is to discuss the major components and function-
ality of the API and to present it as the API of choice for anyone working with
OWL 2 ontologies.
1
http://www.topquadrant.com/products/TB_Composer.html

2
http://pellet.owldl.com/ontology-browser

Rinke Hoekstra
Proceedings of OWL: Experiences and Directions 2009 (OWLED 2009),
Rinke Hoekstra and Peter F. Patel-Schneider, editors. http://www.webont.org/owled/2009

Rinke Hoekstra

2 OWL API Design

The original version of the OWL API provided a suite of interfaces along with
a reference implementation that facilitated the use of OWL in a wide variety
of applications. The underlying design rationale for that API was discussed in
detail in [2]. Although the latest version of the OWL API still follows much of the
approach outlined in [2], it has undergone a number of significant design changes
in order to ensure alignment with the OWL 2 specification. In particular, one of
the main changes has been a shift from the underlying the frame oriented model
that was provided by the OWL Abstract Syntax to an axiom oriented model
upon which the OWL 2 standard is based.

At its core, the OWL API consists of a set of interfaces for inspecting, ma-
nipulating and reasoning with OWL ontologies. The OWL API supports loading
and saving ontologies is a variety of syntaxes. However, none of the model in-
terfaces in the API reflect, or are biased to any particular concrete syntax or
model. For example, unlike other APIs such as Jena [3], or the Protégé 3.X API,
the representation of class expressions and axioms is not at the level of RDF
triples. Indeed, the design of the OWL API is directly based on the OWL 2
Structural Specification [13]. This means that an ontology is simply viewed as
a set of axioms and annotations as depicted in Figure 1. The names and hier-
archies of interfaces for entities, class expressions and axioms in the OWL API
correspond closely to the structural specification. In fact, there is almost a one-
to-one translation between the OWL 2 Structural Specification and core OWL
API model interfaces, meaning that it is easy to relate the high level OWL 2
specification directly to the design of the API.

2.1 Ontology Management

Besides the model interfaces for representing entities, class expressions and ax-
ioms, it is necessary to have certain machinery that allow applications to manage
ontologies. Figure 1 shows a high level overview of this picture. The OWLOntology
interface provides a point for efficiently accessing the axioms contained in an on-
tology. For example, axioms can be accessed by type and by signature to name
a few. Different implementations of the OWLOntology interface can provide dif-
ferent storage mechanisms for ontologies. While the reference implementation
of the API provides an efficient main-memory storage solution, it is possible to
provide alternative implementations. This is discussed further in Section 2.4.

The OWLOntologyManager provides a central point for creating, loading,
changing and saving ontologies, which are instances of the OWLOntology inter-
face. Each ontology is created or loaded by an ontology manager. Each instance
of an ontology is unique to a particular manager, and all changes to an ontology
are applied via its manager.

This centralised management design allows client applications to have one
access point to ontologies, to provide redirection mechanisms and other cus-
tomisations for loading ontologies, and allows client applications to monitor all
changes that are applied to any loaded ontologies. The manager also hides much

of the complexity associated with choosing the appropriate parsers and renderers
for loading and saving ontologies and therefore obviates clients from worrying
about these issues.

OWLOntologyManager OWLOntology
0..*1

OWLAxiom

0..*

ontologyIRI : IRI

versionIRI : IRI

OWLOntologyID

1

OWLAnnotation
0..*

Fig. 1. A UML diagram showing the management of ontologies in the OWL API. The
OWLOntology interface provides accessors for efficiently obtaining the axioms contained
within an ontology. The method of storing axioms is provided by different implemen-
tations of the OWLOntology interface. The design of the API makes it possible to mix
and match implementations, for example, an in-memory ontology could be used to-
gether with one that is stored in a database and one that is stored in some kind of
triple store. The OWL API reference implementation provides an efficient in-memory
storage solution.

2.2 Ontology Change

Changes to ontologies are applied using change objects that implement the
OWLOntologyChange interface. Besides adding and removing axioms, changes
to ontologies include setting the ID of an ontology, adding and removing anno-
tations, and adding and removing imports.

In essence, change support is implemented using the Command design pat-
tern [4], which makes it easy to record and serialise ontology changes, implement
undo and redo functionality, and support transactional behaviour. This makes
the API ideal for use in editors and other systems that need the ability to log
changes.

All ontology changes are applied through an ontology manager. This means
that it is possible to apply a list of ontology changes, which make multiple
changes to multiple ontologies, as a single unit. This works rather well for ap-
plications such as ontology editors, where an edit operation such as entity name
change (entity IRI change) can involve the addition and removal of multiple ax-
ioms from multiple ontologies—it is possible to group the changes together to
form one “editor operation” and apply these changes at one time.

2.3 Parsing and Rendering OWL Ontologies

A major benefit of aligning the OWL API with the OWL 2 structural specifi-
cation is that there is no commitment to a particular concrete syntax. While
there is only one syntax that an OWL implementation must support, namely
RDF/XML, there are several other syntaxes that exist which are optimised for
different purposes. For example, Turtle syntax provides a slightly more read-
able RDF serialisation. Similarly, the Manchester OWL Syntax provides a hu-
man readable serialisation for OWL ontologies. OWL/XML [12] is a newly de-
signed syntax that allows ontologies to be stored in “plain” XML that, unlike
RDF/XML, can be used directly by XML tools and technologies such as XPath.

The OWL API therefore includes out of the box support for reading and
writing ontologies in several syntaxes, including RDF/XML, Turtle, OWL/XML,
OWL Functional Syntax, The Manchester OWL Syntax, KRSS Syntax and the
OBO flat file format. Due to the underlying design of the API, it is possible for
the imports closure of an ontology to contain ontologies that were parsed from
ontology documents written in different syntaxes.

The reference implementation of the OWL API uses a registry of parsers and
renderers, which makes it easy to add support for custom syntaxes. The appro-
priate parser is automatically selected at runtime when an ontology is loaded. By
default, ontologies are saved back into the format from which they were parsed,
but it is possible to override this in order to perform syntax conversion tasks
and “save as” operations in editors for example.

2.4 Data Structure Storage

The reference implementation provides data structures for efficient in-memory
representations of ontologies. For many purposes this is sufficient. For example,
the latest versions of the National Cancer Institute (NCI) ontology can comfort-
ably fit into around 400MB of memory (100MB of memory without annotations).
However, the API has been designed so that it is possible to provide other storage
mechanism for ontologies. For example, there are use cases for storing ontolo-
gies in relational databases or triple stores. The OWL API has been designed
with these use cases in mind, and it is possible to “mix and match” storage
implementations, so that an ontology imports closure could contain in-memory
representations of ontologies, ontologies persisted in secondary storage in the
form of a custom database, and ontologies stored in triple stores.

While the API does not include these alternative storage mechanisms out
of the box, third parties have developed such solutions. An exemplar solution,
called OWLDB, has been developed by Henss et al [9]. Their solution stores
ontologies in a relational database, using a “native” mapping of OWL constructs
(as opposed to a mapping to triples) to a custom database schema.

2.5 Reasoner Interfaces

A key part of working with OWL ontologies is reasoning. Reasoners are used
to check the consistency of ontologies, check to see whether the signature of an

ontology contains unsatisfiable classes, compute class and property hierarchies,
and check to see if axioms are entailed by an ontology. The OWL API has various
interfaces to support interacting with OWL reasoners. The main interface is the
OWLReasoner interface which provides methods to perform the aforementioned
tasks.

The reasoner interfaces have been designed so as to make it easier for rea-
soners to expose functionality that provides incremental reasoning support. The
API allows a reasoner to be set up so that it listens for ontology changes and
either immediately processes the changes or queues them in a buffer which can
later be processed. This design caters for the scenario where a reasoner is used
within an ontology editor and, at some point, must respond to edits of the ontol-
ogy, or situations where a reasoner should respond to ontology changes as they
arrive.

At the time of this writing, the CEL [1], FaCT++ [17], HermiT [14], Pel-
let [16], and Racer Pro [5] reasoners provide OWL API wrappers. This means
that they are also available as reasoner plugins to Protégé-4.

3 Profile Validation

The OWL 2 specification provides various OWL profiles that correspond to
syntactic subsets of the OWL 2 language. The profiles are defined in the OWL
2 profiles document, namely OWL 2 EL, OWL 2 QL and OWL 2 RL. Each
profile is designed to trade some expressive power for efficiency of reasoning. For
example, the OWL 2 EL profile trades expressivity for the benefit of polynomial
time subsumption testing. Similarly, reasoning for the OWL 2 RL profile can be
implemented using a rule engine.

For people that use these profiles, and tools that support them, it can be
necessary to determine whether or not an ontology falls into one of the profiles
or not. The OWL API contains an API to deal with ontology profiles. Various
profile related interfaces are available that provide functionality to ask whether
an ontology is within a profile. When doing this a profile report is generated that
specifies whether an ontology and its imports closure fall into a given profile, and
if not details why this is the case. The profile API allows complete programmatic
access by client software, with fine-grained objects that represent specific reasons
for profile violations.

A Web based application that performs profile validation on an ontology
and its imports closure was written with the OWL API is available at http:

//owl.cs.manchester.ac.uk/validator. A screen shot of a report generated
by the validator is shown in Figure 2. Each item in the detailed report can
be accessed programmatically, which means that client software can customise
report rendering, or offer more advanced functionality such as repair suggestions
that would take an ontology back into the desired profile.

Fig. 2. A Screenshot of the OWL 2 Profile Validator. The validator is written using
the Profiles API which is part of the OWL API

4 Changes between Version 2 and Version 3

The OWL API has undergone several significant changes between version 2 and
version 3, which will have an impact on client code. These changes are described
in the following sections.

4.1 Ontology Identity

In previous versions of the API, ontologies were identified by IRI (URI). However,
since OWL 2, it is not necessary to “name” ontologies with an IRI. Additionally,
if an ontology does have an IRI then it may also have a version IRI. The OWL
API therefore provides an abstraction of ontology identity using an “identifier
object”, namely OWLOntologyID. Ontology IDs are immutable, but the ID of an
ontology may be set at any time via the ontology’s manager.

4.2 Axiom Annotations

The previous version of the OWL API supported axiom annotations, however the
mechanism for creating and managing axiom annotations has changed signifi-
cantly. Originally, axiom annotations were “stand-off” objects. That is, an axiom
annotation had an independent existence from the axiom it annotated. In line
with this, the structural identity of an axiom was not affected by any annotations
on the axiom. In the final OWL 2 specification, axiom annotations are embedded
into the axiom itself and affect the structural identity of the axiom. For example,
SubClassOf(Annotation(rdfs:comment ‘‘Added on 09/09/2009’’) A B) is

not structurally equal to the axiom SubClassOf(A B). The OWL API was mod-
ified to remove the disparity with the OWL 2 specification. While seemingly mi-
nor, this modification does have an impact on the way that annotations are added
and removed from axioms. Suppose a user of a tool such as Protégé-4 wants
to annotate, SubClassOf(A B) with Annotation(rdfs:comment ‘‘Added on

09/09/2009’’). While the user may think of the annotation process as simply
adding the annotation to the axiom, and this was the model used in the previous
version of the OWL API, it is now necessary to remove SubClassOf(A B) from
the ontology and create a new axiom SubClassOf(Annotation(rdfs:comment

‘‘Added on 09/09/2009’’) A B) which is added to the ontology.

4.3 Interface Naming

Interfaces for representing entities, class expressions, and axioms have been
named in accordance with the OWL 2 Structural Specification. Unfortunately
this has meant that some interface name changes were necessary. For exam-
ple, in previous version of the API, the high level interface for representing
class expression was called OWLDescription, but this has been renamed to
OWLClassExpression. There are obvious benefits of having the API interface
names aligned with the names used in the OWL 2 structural specification. In
particular, the extensive, and high quality, suite of OWL 2 specification docu-
ments serve as secondary OWL API documentation. After reading the OWL 2
specification documents, people should be able to easily identify the correspon-
dence between the API and the specification.

While these name changes have introduced a backwards incompatibility with
previous versions of the API, it was felt that the benefits of directly following the
OWL 2 specification, and aligning the names of API interfaces with the names
used in the specification outweighed the disadvantages. Additionally, the changes
are such that a simple find and replace should be possible, and it is likely that
a converter will be provided to do the bulk of updating existing OWL API 2.X
client code to version 3.0.0 of the API.

5 Examples of Use

As an illustration of the kinds of applications and services that can be developed
using the OWL API some examples are discussed below. The examples have been
split into use of the API for editors and browsers, and use in OWL oriented
services.

5.1 Use in Editors and Ontology Browsers

The OWL API is used in the following editors and browsers:

– Protégé-4— An open source OWL ontology editor that was initially designed
and developed at the University of Manchester. Protégé-4 uses the OWL API

to underpin all ontology management tasks, from loading and saving ontolo-
gies, to manipulating ontologies during editing, to interacting and offering a
choice of OWL reasoners. Virtually all of the functionality provided by the
OWL API is utilised by Protégé-4.

– The NeOn Toolkit— An Eclipse based ontology development environment
that was developed as part of the 14.7 million Euro EU funded project. While
early versions of the toolkit were written on top of KAON23, the project has
recently switched over to using the OWL API.

– OWLSight — A web based ontology browser written by Clark & Parsia
that uses the Pellet reasoner. The browser is written using the Google Web
Toolkit, with the OWL API being used to read and access ontologies.

– Ontology Browser —- An ontology browser that dynamically generates doc-
umentation for ontologies and is based on the OWLDoc software. The OWL
API is used for loading and accessing ontologies and interfacing with the
FaCT++ reasoner.

– OntoTrack —- A browsing and editing tool for OWL ontologies [11] that is
developed at Ulm University. The OWL API is used for loading and accessing
ontologies for rending into a graph.

5.2 Use in OWL Services

– Syntax Converter — A web based application that converts ontologies writ-
ten in one OWL syntax to another OWL syntax. Syntax is converted from
one format to another format by loading and saving ontologies using the
OWL API. (http://owl.cs.manchester.ac.uk/converter)

– Ontology Repository — A repository of ontologies used for reasoner and
tools testing. The loading and serialising makes use of the OWL API parsers
and renderers, while the metrics for each ontology are computed by the OWL
API’s Metrics API. (http://owl.cs.manchester.ac.uk/repository)

– Validator — Uses the various profile validators to determine if an ontology
and its imports closure is within a specific profile. The validator returns
valdiation reports in a variety of human readable syntaxes. The validator
makes use of the Profiles API, which is part of the OWL API. (http://
owl.cs.manchester.ac.uk/validator)

– Module Extractor — Allows locality based modules to be extracted from
ontologies. The extractor makes used of OWL API modularisation code,
which currently provides Syntactic Locality Based Modules [8]. (http://
owl.cs.manchester.ac.uk/modularity)

6 Conclusions

– The latest version of the OWL API supports the OWL 2 specification
– It provides support for parsing and rendering ontologies written in RDF/XML,

Turtle, OWL/XML, OWL Functional Syntax, and Manchester OWL Syntax.
3
http://kaon2.semanticweb.org

– The API provides a common interface to various reasoners, including CEL,
FaCT++, HermiT, Pellet and Racer Pro.

– OWL 2 Profile validation functionality is included in the distribution. On-
tologies can be checked to see if they are OWL 2, OWL 2 DL, or in the OWL
2 EL, OWL 2 QL, or OWL 2 RL profiles.

– The OWL API may be downloaded via http://owlapi.sourceforge.net.

7 Acknowledgements

The authors would like to acknowledge the many people who have contributed
to the OWL API since the first version was designed and developed by Sean
Bechhofer, Raphael Volz and Philip Lord [2] in 2003. In particular (in alphabet-
ical order), Ron Alford4, Sebastian Brandt5 Nick Drummond5, Birte Glimm6,
Luigi Iannone5, Aditya Kalyanpur7, Boris Motik6, Olaf Noppens8, Pavel Klinov5,
Timothy Redmond9, Thomas Schneider5, Evren Sirin4, Mike Smith4, past and
present members of the Information Management Group (IMG) and the Bio-
Health Informatics Group (BHIG) at the University of Manchester, and all of
the OWL API users who have posted bug reports and feedback on the OWL
API public mailing list.

References

1. F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—a polynomial-time reasoner for
life science ontologies. In U. Furbach and N. Shankar, editors, Proceedings of the
3rd International Joint Conference on Automated Reasoning (IJCAR’06), volume
4130 of Lecture Notes in Artificial Intelligence, pages 287–291. Springer-Verlag,
2006.

2. Sean Bechhofer, Raphael Volz, and Philip Lord. Cooking the semantic web with
the OWL API. In Dieter Fensel, Katia Sycara, and John Mylopoulos, editors, The
Semantic Web - ISWC 2003. The Second International Semantic Web Conference,
Sanibel Island, Florida, USA, volume 2870/2003 of Lecture Notes in Computer
Science, pages 659–675, Sanibel Island, Florida, USA, October 2003. Springer.

3. Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne,
and Kevin Wilkinson. Jena: implementing the semantic web recommendations. In
Stuart Feldman, Mike Uretsky, Mark Najork, and Craig Wills, editors, Proceedings
of the 13th international World Wide Web conference on Alternate track papers &
posters, pages 74–83, New York, NY, USA, May 2004. ACM.

4. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional Com-
puting Series. Addison-Wesley, 21st edition, October 1994.

4 Clark & Parsia
5 The University of Manchester
6 Oxford University
7 IBM TJ Watson Research Center, New York
8 Ulm University
9 Stanford University

5. Volker Haarslev and Ralf Möller. RACER system description. In International
Joint Conference on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture
Notes In Computer Science, pages 701–705, 2001.

6. Peter Haase, Holger Lewen, Rudi Studer, Duc Thanh Tran, Michael Erdmann,
Mathieu d’Aquin, and Enrico Motta. The neon ontology engineering toolkit. In
Jeff Korn, editor, WWW 2008 Developers Track, April 2008.

7. Matthew Horridge, Dmitry Tsarkov, and Timothy Redmond. Supporting early
adoption of OWL 1.1 with Protégé-OWL and FaCT++. In Bernardo Cuenca
Grau, Pascal Hitzler, Conor Shankey, and Evan Wallace, editors, OWL: Expe-
riences and Directions (OWLED), volume 216 of CEUR Workshop Proceedings.
CEUR-WS.org, November 2006.

8. Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ulrike Sattler, Thomas Schneider,
and Raphael Berlanga Llavori. Safe and economic re-use of ontologies: A logic-
based methodology and tool support. In Sean Bechhofer, Manfred Hauswirth,
Joerg Hoffmann, and Manolis Koubarakis, editors, The Semantic Web: Research
and Applications, 5th European Semantic Web Conference, ESWC 2008, Tenerife,
Canary Islands, Spain, volume 5021 of Lecture Notes in Computer Science, pages
185–199. Springer, June 2008.

9. Joachim Kleb Jörg Henss and Stephan Grimm. A database backend for OWL. In
Rinke Hoeksta and Peter F. Patel-Schneider, editors, OWL: Experiences and Di-
rections (OWLED 2009), CEUR Workshop Proceedings. CEUR-WS.org, October
2009.

10. Aditya Kalyanpur, Bijan Parsia, and James Hendler. A tool for working with web
ontologies. In International Journal on Semantic Web and Information Systems,
volume 1, Jan - Mar 2005.

11. Thorsten Liebig and Olaf Noppens. OntoTrack: Combining browsing and editing
with reasoning and explaining for OWL Lite ontologies. In Sheila McIlraith, Dim-
itris Plexousakis, and Frank van Harmelen, editors, The Semantic Web - ISWC
2004. Third International Semantic Web Conference 2004, Hiroshima, Japan, vol-
ume 3298 of Lecture Notes in Computer Science, pages 244–258. Springer, Novem-
ber 2004.

12. Boris Motik, Bijan Parsia, and Peter F. Patel-Schneider. OWL 2 Web Ontology
Language XML serialization. W3C Recommendation, W3C – World Wide Web
Consortium, October 2009.

13. Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. OWL 2 Web Ontology
Language structural specification and functional style syntax. W3C Recommen-
dation, W3C – World Wide Web Consortium, October 2009.

14. Boris Motik, Rob Shearer, and Ian Horrocks. Optimized reasoning in description
logics using hypertableaux. In Proc. of the 21st Int. Conf. on Automated Deduction
(CADE-21), volume 4603 of Lecture Notes in Artificial Intelligence, pages 67–83.
Springer, 2007.

15. Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL Web Ontology
Language semantics and abstract syntax. W3C Recommendation, 10 February
2004.

16. Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: A practical OWL-DL reasoner. Journal of Web Semantics, 5(2),
2007.

17. Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: System de-
scription. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006),
volume 4130 of Lecture Notes in Artificial Intelligence, pages 292–297. Springer,
2006.

