PRACTICAL ASPECTS OF QUERY REWRITING FOR OWL 2

Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik

Oxford University
Computing Laboratory

OWL: Experiences and Directions Workshop
October 2009
DATA ACCESS WITH OWL 2 QL

\(T = \{ Q(x) \leftarrow \text{teaches}(x, y), Q(x) \leftarrow \text{Teacher}(x), Q(x) \leftarrow \text{Professor}(x), Q(x) \leftarrow \text{hasTutor}(y, x) \} \)

\(\text{sql}(Q_T) = \text{SELECT name FROM PROFESSOR UNION SELECT Tutor FROM Student} \)
DATA ACCESS WITH OWL 2 QL

\[Q(x) \leftarrow \text{teaches}(x, y) \]

Teacher \sqsubseteq \exists \text{teaches}
Professor \sqsubseteq \text{Teacher}
\exists \text{hasTutor} \sqsubseteq \text{Professor}

PROFESSOR(name, office, phone)
STUDENT(name, major, tutor)
DATA ACCESS WITH OWL 2 QL

$Q(x) \leftarrow teaches(x, y)$

Teacher $\sqsubseteq \exists.teaches$
Professor \sqsubseteq Teacher
$\exists.hasTutor^{-}$ \sqsubseteq Professor

PROFESSOR($name, office, phone$)
STUDENT($name, major, tutor$)

Professor \mapsto SELECT name
FROM PROFESSOR

hasTutor \mapsto SELECT name,tutor
FROM STUDENT
DATA ACCESS WITH OWL 2 QL

\[Q(x) \leftarrow \text{teaches}(x, y) \]

Teacher \[\sqsubseteq \exists \text{teaches} \]
Professor \[\sqsubseteq \text{Teacher} \]
\[\exists \text{hasTutor}^- \sqsubseteq \text{Professor} \]

PROFESSOR(*name*, *office*, *phone*)
STUDENT(*name*, *major*, *tutor*)

Professor \[\mapsto \begin{align*}
& \text{SELECT name} \\
& \text{FROM PROFESSOR}
\end{align*} \]

hasTutor \[\mapsto \begin{align*}
& \text{SELECT name, tutor} \\
& \text{FROM STUDENT}
\end{align*} \]

\[Q \]

\[\mathcal{T} \]

\[Q_{\mathcal{T}} \]

\[\mathcal{M} \]

\[\text{Transform } Q_{\mathcal{T}} \text{ to SQL} \]

\[\text{Evaluate } \text{sql}(Q_{\mathcal{T}}) \]

\[\text{ans}(Q, \langle \mathcal{T}, \text{DB} \rangle) \]

Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik
Data Access with OWL 2 QL

\[Q(x) \leftarrow \text{teaches}(x, y) \]

Teacher \sqsubseteq \exists \text{teaches}
Professor \sqsubseteq \text{Teacher}
\exists \text{hasTutor}^- \sqsubseteq \text{Professor}

CGLLR rewriting algorithm by Calvanese et al.

\[Q = \{ Q(x) \leftarrow \text{teaches}(x, y), Q(x) \leftarrow \text{Teacher}(x), Q(x) \leftarrow \text{Professor}(x), Q(x) \leftarrow \text{hasTutor}(y, x) \} \]

\[\text{sql}(Q_T) = \text{SELECT name FROM PROFESSOR \cup SELECT Tutor FROM Student} \]

Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik
DATA ACCESS WITH OWL 2 QL

\[Q(x) \leftarrow teaches(x, y) \]

Teacher ⊑ ∃teaches
Professor ⊑ Teacher
∃hasTutor ⊑ Professor

\[Q_T = \{ Q(x) \leftarrow teaches(x, y), \]
\[Q(x) \leftarrow Teacher(x), \]
\[Q(x) \leftarrow Professor(x), \]
\[Q(x) \leftarrow hasTutor(y, x) \} \]

\[\text{sql}(Q_T) = \text{SELECT name FROM PROFESSOR UNION SELECT Tutor FROM Student} \]

Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik
Practical Aspects of Query Rewriting for OWL 2
Data Access with OWL 2 QL

\[Q(x) \leftarrow \text{teaches}(x, y) \]

Teacher ⊑ ∃teaches
Professor ⊑ Teacher
∃hasTutor ⊑ Professor

\[Q_T = \{ Q(x) \leftarrow \text{teaches}(x, y), \\
 Q(x) \leftarrow \text{Teacher}(x), \\
 Q(x) \leftarrow \text{Professor}(x), \\
 Q(x) \leftarrow \text{hasTutor}(y, x) \} \]

\[\text{sql}(Q_T) = \text{SELECT name} \\
 \text{FROM PROFESSOR} \\
 \text{UNION} \\
 \text{SELECT Tutor} \\
 \text{FROM Student} \]

Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik
Practical Aspects of Query Rewriting for OWL 2
SO, ARE WE DONE HERE?
SO, ARE WE DONE HERE?

- Q_T is worst-case exponential w.r.t. Q and T
 - Costly to compute
 - Costly (or impossible) to evaluate

Applications may require constructs that go beyond QL.

Student $\sqsubseteq \exists$

\text{hasSupervisor}$\sqsubseteq \text{GraduateStudent}$

Existential

\exists

\text{studies.Course}$\sqsubseteq \text{Student}$

OxfordStudent $\sqsubseteq \exists$

\text{studiesAt}.\{OxfordUniversity\}$

RQR (R\text{ESOLUTION - B}ASED \text{QUERY R}\text{EWRITING})

Handles ELHIO \neg (most of OWL 2 EL)

QT might be a datalog query

"Pay-as-you-go" behavior: extends and generalizes CGLLR
So, are we done here?

- Q_T is worst-case exponential w.r.t. Q and T
 - Costly to compute
 - Costly (or impossible) to evaluate
- Applications may require constructs that go beyond QL
 - $\text{Student} \sqcap \exists \text{hasSupervisor} \sqsubseteq \text{GraduateStudent}$
 - $\exists \text{studies.Course} \sqsubseteq \text{Student}$
 - $\text{OxfordStudent} \sqsubseteq \exists \text{studiesAt.}\{\text{OxfordUniversity}\}$

RQR (Resolution-Based Query Rewriting)

Handles ELHIO \neg (most of OWL 2 EL)

QT might be a datalog query

"Pay-as-you-go" behavior: extends and generalizes CGLLR
SO, ARE WE DONE HERE?

- Q_T is worst-case exponential w.r.t. Q and T
 - Costly to compute
 - Costly (or impossible) to evaluate
- Applications may require constructs that go beyond QL
 - Student $\sqcap \exists$hasSupervisor \sqsubseteq GraduateStudent
 - \existsstudies.Course \sqsubseteq Student
 - OxfordStudent $\sqsubseteq \exists$studiesAt.\{OxfordUniversity\}

RQR (Resolution-based Query Rewriting)

- Handles ELHIOT^- (most of OWL 2 EL)
So, are we done here?

- Q_T is worst-case exponential w.r.t. Q and T
 - Costly to compute
 - Costly (or impossible) to evaluate

- Applications may require constructs that go beyond QL
 - Student $\sqcap \exists \text{hasSupervisor} \sqsubseteq \text{GraduateStudent}$
 - $\exists \text{studies.Course} \sqsubseteq \text{Student}$
 - OxfordStudent $\sqsubseteq \exists \text{studiesAt.\{}\text{OxfordUniversity}\}$

RQR (Resolution-based Query Rewriting)

- Handles $ELHIO^-$ (most of OWL 2 EL)
- Q_T might be a datalog query
- “Pay-as-you-go” behavior: extends and generalizes CGLLR
EVALUATION

NUMBER OF INFERENCES

Overall

<table>
<thead>
<tr>
<th>REQUIEM (RQR) C (CGLLR)</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70,846</td>
</tr>
<tr>
<td></td>
<td>343,813</td>
</tr>
</tbody>
</table>

Average

<table>
<thead>
<tr>
<th>REQUIEM (RQR) C (CGLLR)</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,200</td>
</tr>
<tr>
<td></td>
<td>12,066</td>
</tr>
</tbody>
</table>

REQUIEM: 73% smaller, 0% larger, and 27% equal

NUMBER OF QUERIES

Overall

<table>
<thead>
<tr>
<th>REQUIEM (RQR) C (CGLLR)</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10,931</td>
</tr>
<tr>
<td></td>
<td>75,301</td>
</tr>
</tbody>
</table>

Average

<table>
<thead>
<tr>
<th>REQUIEM (RQR) C (CGLLR)</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>2,682</td>
</tr>
</tbody>
</table>

REQUIEM: 83% smaller, 0% larger, and 17% equal
Evaluation

<table>
<thead>
<tr>
<th>Number of Inferences ≈ Time</th>
<th>REQUIEM (RQR)</th>
<th>C (CGLLR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>70,846</td>
<td>343,813</td>
</tr>
<tr>
<td>Average</td>
<td>2,200</td>
<td>12,066</td>
</tr>
</tbody>
</table>

- REQUIEM: 73% smaller, 0% larger, and 27% equal
Evaluation

Number of Inferences ≈ Time

<table>
<thead>
<tr>
<th></th>
<th>REQUIEM (RQR)</th>
<th>C (CGLLR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>70,846</td>
<td>343,813</td>
</tr>
<tr>
<td>Average</td>
<td>2,200</td>
<td>12,066</td>
</tr>
</tbody>
</table>

- **REQUIEM**: 73% smaller, 0% larger, and 27% equal

Number of Queries

<table>
<thead>
<tr>
<th></th>
<th>REQUIEM (RQR)</th>
<th>C (CGLLR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>10,931</td>
<td>75,301</td>
</tr>
<tr>
<td>Average</td>
<td>289</td>
<td>2,682</td>
</tr>
</tbody>
</table>

- **REQUIEM**: 83% smaller, 0% larger, and 17% equal
Optimizing the Rewritings

Query Subsumption

\[Q_1 = Q(x) \leftarrow \text{teaches}(x, y) \]
\[Q_2 = Q(x) \leftarrow \text{teaches}(x, y) \land \text{Student}(y) \]
OPTIMIZING THE REWRITINGS

QUERY SUBSUMPTION

\[Q_1 = Q(x) \leftarrow \text{teaches}(x, y) \]
\[Q_2 = Q(x) \leftarrow \text{teaches}(x, y) \land \text{Student}(y) \]

\(Q_1 \) subsumes \(Q_2 \)
Optimizing the Rewritings

Query Subsumption

\[
Q_1 = Q(x) \leftarrow \text{teaches}(x, y) \\
Q_2 = Q(x) \leftarrow \text{teaches}(x, y) \land \text{Student}(y)
\]

\[Q_1 \text{ subsumes } Q_2\]

- Discard **subsumed** queries a posteriori
- **Significant** reduction in the size of the rewritings
Optimizing the Rewritings

Query Subsumption

\[Q_1 = Q(x) \leftarrow \text{teaches}(x, y) \]
\[Q_2 = Q(x) \leftarrow \text{teaches}(x, y) \land \text{Student}(y) \]

\(Q_1 \) subsumes \(Q_2 \)

- Discard *subsumed* queries a posteriori
- Significant reduction in the size of the rewritings
- On the fly: *forward/backward* subsumption
- Straightforwardly applicable to RQR
CONSIDERATIONS

- Q_T is not guaranteed to be a UCQ: use of deductive database systems
Considerations

- Q_T is not guaranteed to be a UCQ: use of **deductive** database systems
- Additional **optimizations**
 - Empty EDB predicates pruning
 - Dependency graph pruning
CONSIDERATIONS

- Q_T is not guaranteed to be a UCQ: use of deductive database systems
- Additional optimizations
 - Empty EDB predicates pruning
 - Dependency graph pruning
- Greedy unfolding

Good performance w.r.t. time and size of the rewritings
Greedy unfolding produces UCQs in many cases
GOING BEYOND QL

CONSIDERATIONS

- Q_T is not guaranteed to be a UCQ: use of deductive database systems
- Additional optimizations
 - Empty EDB predicates pruning
 - Dependency graph pruning
- Greedy unfolding

EVALUATION

- Good performance w.r.t. time and size of the rewritings
- Greedy unfolding produces UCQs in many cases
CONCLUSIONS AND FUTURE WORK

CONCLUSIONS

- RQR: significantly smaller rewritings in significantly fewer steps than existing algorithms
- Amenable to various straightforward optimizations
- Use of databases for realistic OWL 2 EL ontologies
- Open source implementation: REQUIEM

1 http://www.comlab.ox.ac.uk/projects/requiem/
Conclusions

- **RQR:** significantly smaller rewritings in significantly fewer steps than existing algorithms
- Amenable to various straightforward optimizations
- Use of databases for realistic OWL 2 EL ontologies
- **Open source** implementation: REQUIEM\(^1\)

Future Work

- Evaluate REQUIEM with databases

\(^1\)[http://www.comlab.ox.ac.uk/projects/requiem/]