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DATA ACCESS WITH OWL 2 QL

Q(x)← teaches(x , y)

Teacher v ∃teaches
Professor v Teacher
∃hasTutor− v Professor

QT = { Q(x)← teaches(x , y),
Q(x)← Teacher(x),
Q(x)← Professor(x),
Q(x)← hasTutor(y , x) }

sql(QT ) = SELECT name
FROM PROFESSOR
UNION
SELECT Tutor
FROM Student
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DATA ACCESS WITH OWL 2 QL
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CGLLR rewriting algorithm by
Calvanese et al.
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SO, ARE WE DONE HERE?

QT is worst-case exponential w.r.t. Q and T
Costly to compute
Costly (or impossible) to evaluate

Applications may require constructs that go beyond QL
Student u ∃hasSupervisor v GraduateStudent
∃studies.Course v Student
OxfordStudent v ∃studiesAt.{OxfordUniversity}

RQR (RESOLUTION-BASED QUERY REWRITING)

Handles ELHIO¬ (most of OWL 2 EL)
QT might be a datalog query
“Pay-as-you-go” behavior: extends and generalizes
CGLLR
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EVALUATION

NUMBER OF INFERENCES ≈ TIME
REQUIEM (RQR) C (CGLLR)

Overall 70,846 343,813
Average 2,200 12,066

REQUIEM: 73% smaller, 0% larger, and 27% equal

NUMBER OF QUERIES

REQUIEM (RQR) C (CGLLR)
Overall 10,931 75,301
Average 289 2,682

REQUIEM: 83% smaller, 0% larger, and 17% equal
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OPTIMIZING THE REWRITINGS

QUERY SUBSUMPTION

Q1 = Q(x)← teaches(x , y)
Q2 = Q(x)← teaches(x , y) ∧ Student(y)

Q1 subsumes Q2

Discard subsumed queries a posteriori
Significant reduction in the size of the rewritings
On the fly: forward/backward subsumption
Straightforwardly applicable to RQR
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GOING BEYOND QL

CONSIDERATIONS

QT is not guaranteed to be a UCQ: use of deductive
database systems

Additional optimizations
Empty EDB predicates pruning
Dependency graph pruning

Greedy unfolding

EVALUATION

Good performance w.r.t. time and size of the rewritings
Greedy unfolding produces UCQs in many cases
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CONCLUSIONS AND FUTURE WORK

CONCLUSIONS

RQR: significantly smaller rewritings in significantly fewer
steps than existing algorithms
Amenable to various straightforward optimizations
Use of databases for realistic OWL 2 EL ontologies
Open source implementation: REQUIEM1

FUTURE WORK

Evaluate REQUIEM with databases

1http://www.comlab.ox.ac.uk/projects/requiem/
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