PRACTICAL ASPECTS OF QUERY REWRITING FOR OWL 2

Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik

Oxford University Computing Laboratory

OWL: Experiences and Directions Workshop
October 2009

 $Q(x) \leftarrow \text{teaches}(x, y)$

Teacher \sqsubseteq \exists teaches Professor \sqsubseteq Teacher

∃hasTutor ☐ Professor

PROFESSOR(name, office, phone) STUDENT(name, major, tutor)

 $Q(x) \leftarrow \text{teaches}(x, y)$

Teacher ⊑ ∃teaches Professor ⊑ Teacher

∃hasTutor ☐ Professor

PROFESSOR(name, office, phone) STUDENT(name, major, tutor)

 $\mathsf{Professor} \;\; \mapsto \;\; \mathtt{SELECT} \;\; \mathtt{name}$

FROM PROFESSOR

 $hasTutor \mapsto SELECT name, tutor$

FROM STUDENT

 $Q(x) \leftarrow \text{teaches}(x, y)$

Teacher ⊑ ∃teaches Professor □ Teacher

∃hasTutor □ Professor

PROFESSOR(name, office, phone) STUDENT(name, major, tutor)

 $\begin{array}{cccc} \textbf{Professor} & \mapsto & \texttt{SELECT name} \end{array}$

FROM PROFESSOR

hasTutor → SELECT name, tutor

FROM STUDENT

$$Q(x) \leftarrow \text{teaches}(x, y)$$

Teacher ☐ ∃teaches
Professor ☐ Teacher
∃hasTutor ☐ Professor

CGLLR rewriting algorithm by Calvanese et al.


```
Q(x) \leftarrow \text{teaches}(x, y)
```

```
Teacher ☐ ∃teaches
Professor ☐ Teacher
∃hasTutor ☐ Professor
```

$$\begin{aligned} Q_{\mathcal{T}} &= \{ & Q(x) \leftarrow \mathsf{teaches}(x,y), \\ & Q(x) \leftarrow \mathsf{Teacher}(x), \\ & Q(x) \leftarrow \mathsf{Professor}(x), \\ & Q(x) \leftarrow \mathsf{hasTutor}(y,x) & \} \end{aligned}$$


```
Q(x) \leftarrow \text{teaches}(x, y)

    ∃teaches

    Teacher
  Professor 

Teacher
∃hasTutor<sup>−</sup> □ Professor
Q_{\mathcal{T}} = \{ Q(x) \leftarrow \text{teaches}(x, y), 
              Q(x) \leftarrow \text{Teacher}(x),
              Q(x) \leftarrow \operatorname{Professor}(x),
              Q(x) \leftarrow \text{hasTutor}(y, x) }
\operatorname{sql}(Q_T)
               = SELECT name
                     FROM PROFESSOR
                     UNTON
```

SELECT Tutor FROM Student

```
Rewrite
          Q w.r.t. \mathcal{T}
         Transform
         Q_{\tau} to SQL
                 \mid \operatorname{sql}(\mathsf{Q}_{\tau})
          Evaluate
                                             DB
            sql(Q_{\tau})
ans(Q, \langle \mathcal{T}, DB \rangle)
```


- lacksquare $Q_{\mathcal{T}}$ is worst-case exponential w.r.t. Q and \mathcal{T}
 - Costly to compute
 - Costly (or impossible) to evaluate

- lacksquare Q_T is worst-case exponential w.r.t. Q and T
 - Costly to compute
 - Costly (or impossible) to evaluate
- Applications may require constructs that go beyond QL
 - Student □ ∃hasSupervisor ⊑ GraduateStudent
 - ∃studies.Course □ Student
 - OxfordStudent

 ∃studiesAt.{OxfordUniversity}

- lacksquare $Q_{\mathcal{T}}$ is worst-case exponential w.r.t. Q and \mathcal{T}
 - Costly to compute
 - Costly (or impossible) to evaluate
- Applications may require constructs that go beyond QL
 - Student □ ∃hasSupervisor ⊑ GraduateStudent
 - ∃studies.Course □ Student
 - OxfordStudent

 ∃studiesAt.{OxfordUniversity}

RQR (RESOLUTION-BASED QUERY REWRITING)

■ Handles *ELHTO*¬ (most of OWL 2 EL)

- lacksquare $Q_{\mathcal{T}}$ is worst-case exponential w.r.t. Q and \mathcal{T}
 - Costly to compute
 - Costly (or impossible) to evaluate
- Applications may require constructs that go beyond QL
 - Student □ ∃hasSupervisor ⊑ GraduateStudent
 - ∃studies.Course □ Student
 - OxfordStudent

 ∃studiesAt.{OxfordUniversity}

RQR (RESOLUTION-BASED QUERY REWRITING)

- Handles *ELHTO* (most of OWL 2 EL)
- \blacksquare Q_T might be a datalog query
- "Pay-as-you-go" behavior: extends and generalizes CGLLR

EVALUATION

EVALUATION

Number of inferences \approx Time

	REQUIEM (RQR)	C (CGLLR)
Overall	70,846	343,813
Average	2,200	12,066

■ REQUIEM: 73% smaller, 0% larger, and 27% equal

EVALUATION

Number of inferences \approx Time

	REQUIEM (RQR)	C (CGLLR)
Overall	70,846	343,813
Average	2,200	12,066

■ REQUIEM: 73% smaller, 0% larger, and 27% equal

NUMBER OF QUERIES

	REQUIEM (RQR)	C (CGLLR)
Overall	10,931	75,301
Average	289	2,682

■ REQUIEM: 83% smaller, 0% larger, and 17% equal

QUERY SUBSUMPTION

$$Q_1 = Q(x) \leftarrow \text{teaches}(x, y)$$

$$Q_2 = Q(x) \leftarrow \mathsf{teaches}(x,y) \land \mathsf{Student}(y)$$

QUERY SUBSUMPTION

$$Q_1 = Q(x) \leftarrow \text{teaches}(x, y)$$

$$Q_2 = Q(x) \leftarrow \mathsf{teaches}(x,y) \land \mathsf{Student}(y)$$

 Q_1 subsumes Q_2

QUERY SUBSUMPTION

$$Q_1 = Q(x) \leftarrow \text{teaches}(x, y)$$

 $Q_2 = Q(x) \leftarrow \text{teaches}(x, y) \land \text{Student}(y)$

Q₁ subsumes Q₂

- Discard subsumed queries a posteriori
- Significant reduction in the size of the rewritings

QUERY SUBSUMPTION

$$Q_1 = Q(x) \leftarrow \text{teaches}(x, y)$$

 $Q_2 = Q(x) \leftarrow \text{teaches}(x, y) \land \text{Student}(y)$

Q₁ subsumes Q₂

- Discard subsumed queries a posteriori
- Significant reduction in the size of the rewritings
- On the fly: forward/backward subsumption
- Straightforwardly applicable to RQR

CONSIDERATIONS

 $lackbox{Q}_T$ is not guaranteed to be a UCQ: use of deductive database systems

CONSIDERATIONS

- $extbf{Q}_T$ is not guaranteed to be a UCQ: use of deductive database systems
- Additional optimizations
 - Empty EDB predicates pruning
 - Dependency graph pruning

CONSIDERATIONS

- $extbf{Q}_T$ is not guaranteed to be a UCQ: use of deductive database systems
- Additional optimizations
 - Empty EDB predicates pruning
 - Dependency graph pruning
- Greedy unfolding

CONSIDERATIONS

- $extbf{Q}_T$ is not guaranteed to be a UCQ: use of deductive database systems
- Additional optimizations
 - Empty EDB predicates pruning
 - Dependency graph pruning
- Greedy unfolding

EVALUATION

- Good performance w.r.t. time and size of the rewritings
- Greedy unfolding produces UCQs in many cases

CONCLUSIONS AND FUTURE WORK

CONCLUSIONS

- RQR: significantly smaller rewritings in significantly fewer steps than existing algorithms
- Amenable to various straightforward optimizations
- Use of databases for realistic OWL 2 EL ontologies
- Open source implementation: REQUIEM¹

CONCLUSIONS AND FUTURE WORK

CONCLUSIONS

- RQR: significantly smaller rewritings in significantly fewer steps than existing algorithms
- Amenable to various straightforward optimizations
- Use of databases for realistic OWL 2 EL ontologies
- Open source implementation: REQUIEM¹

FUTURE WORK

Evaluate REQUIEM with databases