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Abstract. In this paper we describe the design and implementation of
a relational database back-end for the OWL API [3]. The motivation for
this work is to allow servers, such as the NCBO BioPortal [4] and Web-
Protégé1, to use the OWL API to access several large ontologies at the
same time while maintaining a small memory footprint. Our database
backed implementation of some key OWL API interfaces allows such a
server to use the OWL API to access several large OWL ontologies within
a limited memory footprint. This database backend for the OWL API
was implemented independently of but in parallel with a very different
implementation of a database backend [2, 1] for the OWL API based on
Hibernate. This paper will describe the design of the Protégé database
backend and discuss some of the key design decisions and differences from
the Hibernate-based database backend. We have tested this database
backend with the MySql and Postgres databases and it is now being
tested on the BioPortal with the MySql database.

The primary purpose of the Protégé OWL API database backend is to
support the use of the OWL API on servers that need to be able to load
many large ontologies into main memory at the same time. The default
implementation of the OWLOntology class provided by the Manchester
OWL API2 loads the content of an OWL ontology into several hash maps
that live entirely in the applications memory. This implementation is very
fast and has been optimized to use a relatively small memory footprint.
A large ontology - one million axioms in a 150MB ontology - can be
loaded into memory in about 70 seconds and after loading requires ap-
proximately 500MB of 32-bit memory. These are very reasonable numbers
for such a large ontology for users who are loading one or two ontologies
in a desktop applications. However, this setup would not work for ontol-
ogy servers. The NCBO BioPortal is a repository of over 200 biomedical
ontologies that can be accessed through a Web interface or using REST-
ful Web Services. It is a common situation that the BioPortal server to

1 http://protegewiki.stanford.edu/wiki/WebProtege
2 http://owlapi.sourceforge.net/



have fifty ontologies open at the same time several of which may be quite
large. Due to resource limitations, it is not feasible for servers such as Bio-
Portal to load a large number of ontologies into memory. The problem is
two-fold. First these servers have many demands on their resources. They
will quickly run out of resources if they preload all the available ontolo-
gies. Second, even if memory would be sufficient for on-demand loading of
needed ontologies, the time required to load an ontology is incompatible
with a reasonable response time for users. The Protégé database backend
allows a developer to very quickly load and access an implementation of
the OWL API OWLOntology interface for even the largest OWL ontolo-
gies being considered.

The primary disadvantages of putting ontology data into a database
backend are: (1) performance of the initial dump of the ontology into the
database, (2) the performance of queries to the database and (3) the com-
plexity of the implementation. As an example of the first problem, the
same large ontology that loaded into memory in 70 seconds requires 19
minutes to load into the database format. Once in the database format,
the database implementation of the OWLOntology interface will be in-
stantly available on demand; all that is needed to populate the database
version of the OWLOntology interface are a couple of SQL queries. In the
case of the servers at Stanford, this shortcoming is acceptable. When a
large new ontology is submitted to the BioPortal, the user will not see
that ontology immediately show up as ready on the BioPortal page. In-
stead the ontology undergoes some processing which may take some time.
This processing can be done on a separate machine from the main server
and therefore will not degrade server processing.

The second problem occurs because database queries are very expen-
sive when compared with their analogous in-memory operations. We often
see times just under a millisecond to perform even very simple queries in
a database. A primary design goal of the Protégé database backend is to
try to improve performance by avoiding SQL queries when the result can
be calculated in Java code. To this end, we have decided to perform all
serialization and deserialization of OWL axioms in Java code. The serial-
ization of an axiom is stored in the database but never queried or indexed.
This means that OWL axioms never need to be pieced together by joining
the contents of several different tables in the database. The downside is
that a significant amount of time during read operations is spent deseri-
alizing representations of axioms. This is a significant difference between
our implementation and the Hibernate database backend.



Since the serialized form of the axioms is only retrieved and never ex-
amined during SQL queries, the database must hold enough information
to rapidly find the right axiom in the database when needed. In addition
the database implementation has been optimized for use with the OWL
API - other possible uses of the data have not been considered. For ex-
ample, one of the interfaces that the Protégé database backend needed
to implement was getReferencingAxioms which retrieves all axioms that
have the specific entity in their signature. In order to retrieve these ax-
ioms, the Protégé database backend makes use of three tables. The first
table contains a list of all the entities in the signature of the OWL ontol-
ogy, providing a database identifier for the entity, the name (IRI) of the
entity and the type of the entity. The second table lists all the axioms
in the OWL ontology providing each axiom with a database identifier for
the axiom, the serialized form of the axiom and several other properties of
the axiom. The third table links the first two tables by indicating which
entities appear in which axioms. These three tables can easily be joined
together and queried to retrieve, in a single database query, the set of
axioms required by the OWL API call. The choice of what data needs
to be included in these tables is purely driven by the question of what
is needed to efficiently provide the information needed by the OWL API
interfaces.

The third issue with a database backend is the added complexity.
From a user point of view, the database needs to be installed and the
configuration of the database is very important. Then the user needs to
figure out how to provide the right connection strings for the database
and how to use and protect the database passwords. But for our tar-
get applications, web servers that load many ontologies, this complexity
already exists and is part of what a web server must deal with.

But there is also additional complexity in the implementation of the
database backend itself. Instead of simple lookups in a hash table, the
database backend designer has to work with SQL queries and must ad-
ditionally understand the different datatypes that are used by different
databases and differences between supported SQL queries. For example
the fact that Postgres supports the “SELECT DISTINCT ON” but MySql
does not meant that we needed to provide different versions of the same
query for the two databases. In addition, the database backend needs
to avoid storing large amounts of data in memory. For example, in the
Protégé database backend, a lot of effort went into ensuring that the OWL
API call that retrieves all the axioms in an ontology provides a set that
is constructed on demand and does not use all the memory that would



be required to load these axioms at the same time. Finally, in-memory
calls to Hash tables rarely fail and usually then only because of an out-
of-memory condition. In contrast, database queries can fail in numerous
ways.

In the area of complexity, we believe that the Hibernate approach
probably has a natural advantage over the approach that we took. It
provides a layer that protects the developer from low level details. To
implement our database backend, we needed to carefully craft over seventy
SQL queries. A mistake in any one of these queries may lead to errors
or serious performance loss. In addition, some of these queries can easily
use features that are available in one database but not in another. In
many cases the same queries for the Hibernate implementation will be
generated by Hibernate and not the developer.

We are already using the database backend in the BioPortal server
and work is in progress to use a database backend in WebProtégé. Most,
if not all, of this work will work equally well with either database back-
end. Since it is easy to switch between the two implementations it is
important . So we plan on doing some testing work to compare how the
database backends perform both in terms of memory use and in terms of
performance. Since the two database backends have very different design
approaches it will be interesting to see how their behavior differs. Both
database backends are open source available from SVN34. There is also a
proof of concept implementation of a plugin that integrates that database
backend into Protégé 4.1.
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