
SHARE & the Semantic Web - This Time it’s Personal!

Benjamin Vandervalk
1
 , Luke McCarthy1, and Mark Wilkinson1

1
 Heart + Lung Institute at St. Paul‟s Hospital, UBC, Vancouver, BC, Canada.

markw@illuminae.com

Abstract. Currently, in the Semantic Web in Healthcare and Life Sciences
large ontologies representing a “consensus” world-view are selected, then data

relevant to those ontologies is manually located and aggregated prior to
reasoning. This approach presents challenges in addition to the real-world
limitations of reasoning over such large-scale data: data critical to discovery in
the life sciences must often be generated dynamically by analytical algorithms.
Here we describe a prototype system – SHARE – that consumes ontologies and
queries and automatically discovers, retrieves, and reasons over information
relevant to that ontological world view by locating and executing Web Services.
The SHARE system exhibits what we believe are crucial characteristics of the
Semantic Web vision: relevant information is dynamically discovered and/or

generated from distributed resources, and is interpreted, updated, or re-
interpreted as the over-laid local ontology changes.

Keywords: RDF, OWL, Semantic Web, Semantic Web Services, SPARQL,
Workflow, Workflow Orchestration, SADI, SHARE

1 Introduction

As Semantic Web technologies become more pervasive in bioinformatics, we must

urgently define scalable ways to discover, analyse, and organize biological data in

ways that encourage scientific exploration, discourse and disagreement, and in a

manner compliant with the proposed Semantic Web “stack”[1]. The vision of the

“stack” is that distributed, linked data is interpreted by logical reasoning, guided by

ontological axioms. Unfortunately, today‟s Semantic Web in bioinformatics lacks

many features that make this vision scalable to the size of the Web. For example, it is

common to select an ontology representing a shared “consensus” world-view, then

manually locate and aggregate relevant data into a local triple store, and then reason
over that data and classify it into the ontology. Unfortunately, the size of typical

bioinformatics datasets, combined with the fact that commonly-available OWL

reasoners must load the entire dataset into memory before reasoning, render this

approach infeasible without extensive manual pre-filtering. Perhaps an even bigger

problem is that many important bioinformatics data exist only as the transient output

from invocations of analytical tools (often accessed through Web Services) and this

data must be pre-computed and converted before it is semantically accessible.

 SHARE (the Semantic Health and Research Environment) is a mediator system

that enables simultaneous querying of databases and analytical programs distributed

across the Web, where resources are exposed as Services using the SADI (Semantic

Automated Discovery and Integration) Semantic Web Service framework[2].

Together SADI+SHARE differ from other mediator systems in that every aspect of

the system design utilizes Semantic Web standards. On the client-side, queries to

SHARE are expressed in the SPARQL[3] query language, while on the server-side,

SADI Services natively consume and generate RDF data. SADI Service input and

output data-types are described using OWL[4], and Services are discovered and
matched by the SHARE mediator using OWL reasoning. The properties added to a

dataset by a SADI Service can be automatically determined by examining its input

and output OWL Class definitions, and SADI provides a simple Web Service registry

in which Services are indexed and discoverable based on these properties.

In contrast to typical SPARQL query engines, SHARE does not search an existing

RDF dataset for a sub-graph with a specified triple-pattern structure. Instead, SHARE

utilizes SADI by matching individual triple-patterns in the SPARQL query against

SADI Service interface descriptions (in OWL) to discover services capable of

generating those triple patterns; thus the RDF data required to answer any given

SPARQL query is dynamically generated in response to the query being posed. Note

that while distributed SPARQL endpoints may provide some of the query-relevant

data, data may also be dynamically generated through execution of an application or
algorithm since all resources are exposed as Web Services, thus making the nature of

the underlying data resource opaque to the client.

We first introduce the methodology by which SHARE converts SPARQL queries

into Web Service workflows. We then show how formal OWL Class definitions can

similarly be converted into workflows, thus making it possible to dynamically

discover OWL Individuals, compiled from globally distributed data resources, that are

compliant with the OWL Classes in a given local or remote ontology.

2 Methodology

2.1 Conversion of SPARQL

SHARE utilizes properties in a SPARQL query (the predicates in the triple-patterns)

as keys in a query against the SADI registry. Thus the process of discovery for any

given query is relatively straightforward.: for each triple pattern (s,p,o) SHARE

searches for services that have p, or the OWL inverse of p, as one of their generated

properties. Consequently, at each step there are two cases:

 Case 1: s is a concrete node (URI or literal), or a variable that is already bound to

a set of candidate nodes. In this case, the triple pattern is resolved in the forward

direction. First, the SADI registry is queried to find Services that are capable of

generating the predicate in the triple pattern. For each Service discovered, the

candidate nodes of s are compared, using an OWL reasoner, to the axioms in the input

OWL Class definition for the discovered service. Matching nodes become rdf:typed
according to the Service input class and are submitted for processing. (Optionally,

SHARE itself can be used to dynamically resolve OWL Class membership as defined

in §2.2 below.) If o has not been bound to any candidate nodes, the set of retrieved

values for property p become the candidates of o.

 Case 2: s has no candidate nodes and o is a concrete node (URI or literal) or a

variable bound to a set of candidate nodes. In this case, the triple pattern is resolved

as above, but in the reverse direction: instead of p, the OWL inverse of p is used to

find Services. The retrieved values for inverse(p) become the bindings of s.

 Between these two cases, it is frequently possible to automatically synthesize a
Web Service workflow that collects all query-relevant data prior to SPARQL query

resolution. It is currently not possible with SHARE to resolve triple patterns where

both s and o are unbound, but SHARE attempts to order the query to avoid this case.

We are experimenting to determine the optimal behaviour when p, the predicate itself,

is unbound, but s and/or o are bound.

2.2 Conversion of OWL

When OWL Class definitions extend beyond mere declaration of a Class and include

axioms that must be fulfilled in order to achieve class membership, those axioms can

be used to drive Web Service discovery in a manner similar to that described above

for SPARQL queries. SHARE decomposes the definition of the Class to determine

what properties are required for Class membership and these properties (p) are used as

keys in a SADI service look-up. For each discovered Service, candidate individuals

matching the Service‟s input OWL Class are submitted for processing. Further, if a

candidate individual does not conform to a Service‟s Input Class definition, the OWL

axioms of that input Class are similarly decomposed and used for further Web Service

discovery until all required data elements are present.

Clearly, this iterative process must halt, and these stop-points are either non-
axiomatic Class definitions or axioms with strict value requirements. In

bioinformatics both cases often involve database identifiers, so SHARE requires all

database record URIs to be explicitly rdf:typed according to their source database. At

present, SHARE is coded to recognize identifiers from the LSRN and bio2rdf

database record naming schemes; URIs that adhere to either scheme will be

automatically rdf:typed by SHARE and can be used for Web Service matchmaking,

allowing most simple queries to be performed with no initial data whatsoever.

3 Demonstration

The example query below demonstrates SADI+SHARE functionality. This query can

be executed at the CardioSHARE client website[5]. The query simply asks for

instances of the AtRiskPatient OWL Class that appear in the RDF document

referenced in the FROM clause. AtRiskPatient is defined in OWL as equivalent to a

restriction on the BMI property where the value is greater than or equal to 25. SHARE

examines this definition and queries SADI for a Service that can attach the BMI

property, finding the Service at http://sadiframework.org/examples/calculateBMI.
Instances of that Service‟s input OWL class in the patient data are identified and the

Service is invoked on those resources.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX patients: <http://biordf.net/cardioSHARE/patients.owl#>

PREFIX bmi: <http://sadiframework.org/examples/bmi.owl#>

SELECT ?patient ?bmi

FROM <http://biordf.net/cardioSHARE/patients.rdf>

WHERE {

 ?patient rdf:type patients:AtRiskPatient .

 ?patient bmi:BMI ?bmi

}

 The Service performs the BMI calculation based on the patient‟s height and

weight, the output RDF is stored in a transient triple store and a reasoner classifies the
appropriate URIs as instances of AtRiskPatient. Finally, the SPARQL query is

executed over the transient triple store. A more detailed walkthrough of the example

query[6] and additional examples[5] can be found at the CardioSHARE website.

3 Conclusion

 We believe that this is the first time relevant, distributed data has been

dynamically discovered, generated and assembled in response to the assertion of an

ontological class. Formally classifying data in terms of its properties allows the

consequences of a particular definition to be easily explored. Further, the ontological

classes thus created provide a means to share domain knowledge among researchers.

The SADI+SHARE approach, we believe, gives significant impetus to begin defining

“personal ontologies” – ontologies that reflect an individual rather than a shared

world view, which can then be resolved over global data and analytical resources.

The first step towards a personalized Semantic Web!

Acknowledgments. Heart + Stroke Foundation of BC and Yukon, Microsoft

Research, The Canadian Institutes for Health Research, The Natural Sciences and

Engineering Research Council of Canada, and CANARIE.

References

1. Description of W3C Technology Stack Illustration,
http://www.w3.org/Consortium/techstack-desc.html

2. Wilkinson M.D., Vandervalk, B, McCarthy, L.: SADI Semantic Web Services – „cause you
can‟t always GET what you want! Proceedings of SWSIP 2009, Singapore.
http://sadiframework.org/documentation/SADI_SWSIP09_personal.pdf

3. SPARQL query language for RDF, http://www.w3.org/TR/rdf-sparql-query/
4. OWL 2 Web Ontology Language Document Overview, http://www.w3.org/TR/owl2-

overview/
5. CardioSHARE Demo, http://biordf.net/cardioSHARE/query
6. CardioSHARE Walkthrough, http://dev.biordf.net/cardioSHARE/bmi-walkthrough

