A T-Box Generator for testing scalability of
OWL mereotopological patterns

Martin Boeker!*, Janna Hastings?, Daniel Schober!, and Stefan Schulz?

! Institute of Medical Biometry and Medical Informatics,
University Medical Center Freiburg, Freiburg, Germany
2 Chemoinformatics and Metabolism,
European Bioinformatics Institute, Hinxton, UK
3 Department of Medical Informatics, Medical University Graz, Graz, Austria

Abstract. The representation of biomedical structure - from cellular
components to organisms - in biomedical ontologies is of pivotal impor-
tance, as the internal structure of complex structured objects needs to
be referenced in the definition of processes, disorders, phenotypes and
many other entities. Yet, most of the existing biomedical ontologies do
not contain logical axiomatizations for accurately representing the inter-
nal structure.

We have identified the high importance of mereotopology (parthood,
connectedness) for accurate representation in this domain, but the rep-
resentation of mereotopological structure can provide challenges for rea-
soners. To evaluate the scalability of accurate representation of biomed-
ical structure, we have identified design patterns for (i) parthood, both
one-sided, two-sided and cardinality restricted, (ii) class disjointness, and
(iii) spatial disconnectedness. In order to evaluate the DL reasoning per-
formance for these patterns, we have created a T-Box Generator to pro-
grammatically generate small and large experimental T-Boxes with dif-
ferent reasoning complexities resulting from the relative proportions of
the patterns (i) to (iii).

Classification times have been measured for different reasoners in their
most common application settings. We found that, as expected, reason-
ing times increased dramatically with the size and complexity of the
generated ontology, and furthermore, even small numbers of cardinality
restrictions were a major performance killer.

1 Introduction

It has been repeatedly emphasized that the representation of biomedical struc-
ture - encompassing a broad range from the material constitution of cells and
cell organelles to anatomies of animals and plants, even hospital buildings and
their departments, is of fundamental importance in biomedical ontology. There
is hardly any biomedical ontology or terminology which does not refer to struc-
tural material entities, as they are the location of physiological, pathological,

* To whom correspondence should be addressed: martin.boeker@uniklinik-freiburg.de

and clinical processes, therapeutic or experimental interventions, as well as the
bearers of functions, dispositions, and qualities.

Most OWL-based ontologies currently represent structural entities in a dou-
ble hierarchy, viz. a taxonomic order parallelled by a partonomy. We find ex-
amples for this in the Foundational Model of Anatomy (FMA) [7], as well as
in other OBO anatomy ontologies such as the Adult Mouse Anatomy, and the
Cellular Component hierarchy of the Gene Ontology (GO) [10].

There are basically two kinds of assertions found in these parallel hierarchies:

— Taxonomic parents: A subclassOf B, e.g. Heart subclass0f Cavitated-
Organ

— Part implies whole: All members of the class P are parts of some W. P
subclass0f properPartOf some W, e.g. Heart properPartOf some Cardio-
vascularSystem

Such simple representations are not sufficient for properly expressing axioms
such as the following:

— Mutual disjointness: There are no entities which are both members of
class A and members of class B; e.g. there are no entities which are both
nerve cells and blood cells.

— Spatial disjointness: No member of class A spatially overlaps with any
member of class B, or stricter; no member of A has a part which is also part
of any B. Examples: Nothing is totally located in any liver and any kidney;
nothing which is part of some right arm can be part of some left arm.

— Whole implies part: All members of the class W have some member of P
as part, e.g. all cell membranes have some lipids as part. Note that P being
a mandatory part of W does not mean that W is a mandatory whole for P.

— Counts of parts: Class W has exactly n distinct members of class P as
parts, e.g. all hands have exactly five fingers as parts.

The contributions of this paper are two-fold. Firstly, we define patterns for
the representation of these aspects of biomedical structure in OWL. Secondly,
we provide an ontology performance evaluation tool, in the form of a TBox
generator for different sizes and complexities of ontologies accommodating these
patterns. We use this tool to investigate the scalability of reasoning over these
patterns through generating ontologies of different sizes and complexities. The
advantage of this approach is that ontology developers can pre-test an ontology
in the design phase, before implementation, based on the expected complexity
and size.

2 Patterns for the representation of biomedical structure

The following real world examples from the GO, Mouse Anatomy and FMA
illustrate ontology content patterns for partonomy representation:

— The textual definition of Gastrointestinal tract in the FMA is as follows:

Hollinshead’s 97:528 - From the foregut will differentiate the esopha-
gus, the stomach, and the proximal half of the duodenum. Two buds
appear on the caudal portion: a ventral diverticulum gives rise to the
liver, gallbladder, and a portion of the pancreas; a dorsal diverticu-
lum grows into the dorsal mesentery and gives rise to the remaining
and major part of the pancreas. From the midgut are derived the
second half of the duodenum, the jejunum, ileum, cecum and ap-
pendix; ascending colon, and most of the transverse colon. From the
hindgut are derived the terminal portion of the transverse colon, the
descending and sigmoid colon, and the rectum.

This textual definition shows some good examples of spatial connection,
partonomy with cardinality, and spatial disjointness, which are not captured
in the formalization of the FMA in OWL.

— The Adult Mouse Gross Anatomy ontology has many examples of partono-
mies, e.g., nervous system has part central nervous system (CNS) and other
parts, while the CNS' in turn has part white matter, grey matter and other
parts. It includes no explicit disjoints or spatial disjoints in its representation.

— The GO Cellular Component ontology has divisions at a high level between
classes (X) and classes for parts (Xpart), examples of which are cell/cell
part; extracellular region/ extracellular region part; virion/ virion part. In
other words, the ontology exactly follows the taxonomy/ partonomy distinc-
tion but without explicit disjoints asserted. As is the case with the FMA,
the textual definitions give much more information than is encoded in the
formal axioms. For example, sperm individualization complex is defined as
follows:

A macromolecular complex that cytoskeletal components and part
of the cell membrane, forms at the nuclear end of a male germline
syncytium, or cyst, and translocates the over the length of the syn-
cytium in the course of sperm individualization. Each complex con-
tains an array of 64 investment cones, one per nucleus, that move
synchronously along the spermatogenic cyst.

We express mutual disjointness by the OWL2 DisjointClasses predicate, which
corresponds to the set of axioms:

DisjointClasses (Ci,Cy,...,C,) =g¢ey {C1 subclass0f not Cy;
...;C1 subclassO0f not C,;Cs subclassOf not Cy;...} (1)

Spatial disjointness requires a more complex axiomatization, and there is no
OWL predicate for this: It requires the expression of the condition that nothing
located in any instance of Class! (e.g. UpperLobe) is located in any instance of
Class2 (e.g. LowerLobe) and vice versa:

Cy subClassOf locusOf only (not (hasLocus some Cs)) (2)
Cy subClassOf locusOf only (not (hasLocus some C1)) (3)

with locusOf being the inverse of the transitive and reflexive relation hasLocus,
as the most general spatial inclusion relation. Additionally,

DisjointClasses(Cy, C2). (4)

In our framework the transitive and irreflexive mereological relations proper-
PartOf and hasProperPart are subrelations of hasLocus and locusOf, respec-
tively.

Whole implies part (see example above) shows that partonomies are more
complex compared to taxonomies. It is not sufficient to say that C; and Cs are
in a partonomic order, as the following cases need to be distinguished:

— Class! subClassOf properPartOf some Class2 (“part implies whole”)
— Class2 subClass0f hasProperPart some Class! (“whole implies part”)

and the combination of both of the above (two-sided parthood).

3 The T-Box Generator: automatically creating
ontologies of different sizes and complexities

We developed a T-Box Generator to generate ontologies resembling real world
ontologies differing in a variety of paramaters. The generator was programmed
in the object functional language Scala?. The script can be downloaded from
http://www.imbi.uni-freiburg.de/ontology/t-box-generator.zip. The generation
of different versions of ontologies can be controlled by command line parameters
which enable the batch generation of groups of ontologies.

The T-Box Generator allows the following parameters to be controlled:

— The number of levels in the is_a hierarchy.

— The number of subclasses of each superclass. E.g., with three levels of is_a
hierarchy and 10 subclasses a total of 10% = 1000 classes will be generated.

— The number of mutually disjoint classes in each group of subclasses. The
mutually disjoint classes are also the target of the hasPart relation of the
partonomy when generated and are the source of partOf relations.

— The number of mutually spatially disjoint classes characterized by the spa-
tially disjoint pattern.

— The creation of a partonomy in the ontology. If the partonomy is created
the first class in each subclass group is the source of hasPart relations to all
mutually disjoint classes in the same group of subclasses as defined above
and is the target for partOf relations from these classes. The relations of the
partonomy can further be controlled.

— The partonomy can either be created as subclasses axiom or equivalent
classes axioms for the hasPart relation outgoing from the first class in each
group of subclasses.

4 http://www.scala-lang.org/

v v Thl:g hasPart some 5
v 911 hasPart some 6
v 91141 hasPart some 4
v-81-1-141
1-1-1-1-1 Superclasses
1-1-1-1-2
1-1-1-13 locusOf only (not (hasLocus some 2))
1-1-1-14 locusOf only (not (hasLocus seme 3))
1-1-1-1-5
1-1-1-1-8 Inherited ananymous classes
- @1-141-2
b 11413 Mem
- ®1-114
r 91115 :
B @1-1-1-6
b 1-1-2 Disjoint classes
» 1-1-3
» 1-1-4 s
> 9115 2
L 1-1-6

Fig. 1. The figure displays part of a generated ontology with 5 hierarchical levels and
6 subclasses per superclass. From these 6 classes three are mutually disjoint and three
are spatially mutually disjoint which includes mutual disjointness. The partonomy has
been built as equivalent classes with existential quantification. The target classes of the
hasPart relation are the mutually disjoint classes from the same group of subclasses.

— The quantification for the hasPart relation outgoing from the first class
in each group of subclasses can be either set to existential or to an exact
cardinality. When it is set to an exact cardinality the transitivity switch
(below) is overriden so that the partonomic relations have no transitivity
property.

— The pairs of relations hasLocus — locusOf and hasPart — partOf can be set
as inverse relations.

— The transitivity property for the relations hasPart, partOf, hasLocus and
locusOf can be set on or off.

— The filename under which an ontology is saved can be set.

This set of parameters allows the generation of a variety of ontologies with
typical features of biomedical ontologies to test for performance issues with the
given set of ontology tools comprised by the ontology editor Protégé and the DL
reasoners Pellet, HermiT and Fact++. The advantage of this approach is that
ontology developers are able to pre-test an anticipated ontology for performance
issues before they actually run into them.

A generated ontology with five levels of is_a hierarchy and six subclasses for
each superclass is illustrated in Figure 1.

4 Reasoning scalability: results

We tested three of the most common reasoners that integrate with Protégé
and are under an open source license i.e., Fact++ (version 1.5.2) [11], HermiT

& >
s /S S & N o
e S 5 ’ £ g
FETS & § § N
I 3 <& & <&
1 05 03 03] 26 15 07/ 15 06 03
2 09 07 07, 60 29 18 40 21 141
3 12 11 11[131 76 82| 73 34 22
5| 6 (7776 3 3 no | existential | 4 | 14.9 14.8 14.5| 108 7.7 6.0 >10 min
yes eq 5| 249 250 24.9| 255 18.3 18.38 >10 min
yes | cardinality1| 6 | 171 171 17.1] 13.0 7.4 5.8| out of memory
cardinality 2 | 7 > 10 min 289.4 276.4 277.7| out of memory
0 0 no 1 05 03 03] 24 14 05/ 14 05 04
2 21 17 16| 106 55 38| 67 36 25
sub | yes 3 26 22 20/ 165 93 76| 93 54 49
3| 20 (8000 10 10 no existential | 4 | 154 154 15.4| 151 85 10.2 >10 min
yes eq 5| 226 224 22.3| 233 17.1 159 > 10 min
yes | cardinality 1| 6 > 10 min 28.2 205 18.0 > 10 min
cardinality 5 | 7 > 10 min out of memory > 10 min
0 0 no 1 05 02 03] 24 12 08 12 05 04
2 66 6.7 6.7] 394 261 283| 205 16.3 1441
sub [yes 3 89 87 8.4| 385 332 304| 353 26.7 256
2| 90 (8100 45 | 45 no existential | 4 | 341 33.5 33.5| 441 39.6 29.8 > 10 min
yes eq 5[600 59.6 59.3| 57.3 425 445 > 10 min
yes | cardinality 1| 6 > 10 min 418.2 388.4 387.4| out of memory
cardinality 22| 7 | out of memory out of memory out of memory

Table 1. The classification times of three sequential measurements for three groups
of seven ontologies are shown. The groups of ontologies differ in the depth of is_a
hierarchies and number of subclasses per superclass. The number of mutually disjoint
and spatially disjoint classes is kept to 50% of the number of subclasses. The ontologies
in each group differ by various parameters in increasing complexity.

(version 1.3.3) [8] and Pellet (version 2.2.2) [9]. CB5, a fast reasoner which does
not currently integrate with Protégé 4, and JCel ¢, an ELT compliant reasoner
which was not applicable to all test ontologies, were not included in the test set.

We measured reasoning speed with the default settings for the Protégé 4
reasoner configuration tab, as we assume that many ontology developers in the
biomedical domain will use these defaults. These are: all switches for class in-
ferences, all switches for object property inferences, no switches for datatype
property inferences and no switches for individual inferences set to active. The
measurement was performened on a computer with a 1.6GHz Intel(R) Core(TM)
i7 CPU Q720 with 4GB RAM under Windows 7 64-Bit and Java 64-Bit (Version
1.6.25). The Protégé installation was version 4.1 RC2 build 228.

Protégé was started with the Java command line switch -Xmx3000m result-
ing in an effective memory allocation of 2796MB. For each reasoner and each
ontology three consecutive measurements were performend. After each series of
measurements Protégé was closed and Java unloaded from memory to avoid any
unwanted effects of Java’s automatic memory management on the reasoning per-
formance. The results are illustrated in Table 1. For a graphical representation
of the results see Fig. 2.

® http://code.google.com/p/cb-reasoner/
5 http://lat.inf.tu-dresden.de/systems/cel /

>, Fact++ 1.5.2 HermiT 1.3.3 Pellet 2.2.2

o O

E ©

(o))

c 9

£ 3

o

@

.) j Q 4

o

(o))

© o

[0) T T T T T T T T T T T T T T T T T T

% 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
complexity

—e— 65 classes —@— 2073 classes —&— 90”2 classes

Fig. 2. Reasoning performance grouped by reasoner as well as level of hierarchies and
number of subclasses respectively. For the description of complexity levels refer to
Tab. 1. Outliers in the complexity level 7 are omitted.

5 Discussion

Many of the current biomedical ontologies modelling aspects of biological struc-
ture provide underconstrained logical axioms for the parthood and connected-
ness of the structured objects they contain. This is reflected by a disconnec-
tion between the information content of the textual definitions, which can be
quite detailed, and the logical axioms, which tend to reflect a simplistic parton-
omy and taxonomy, without further axiomatization. Our first contribution is the
identification of patterns for representing the missing structural complexity in
bio-ontologies.

The patterns we have identified fall short of what is needed to fully repre-
sent the domain of mereotopology, since they do not allow the representation
of complex structural interrelationships between parts of a whole, in particular
where such interrelationships can form cycles. An anatomical example of such a
structured object is the human heart, which can be simplistically described in
terms of a left and right atrium and a left and right ventricle, each of which is
connected to each other. For reasons described in [2], OWL models of this type
of structure are underconstrained. Another source of complexity that we do not
capture in the presently proposed set of patterns is that complex wholes can
be partitioned into parts in differing ways and at different levels of granularity
[3]. While this does not present a problem for a simplified representation of the
overall partonomy such as is used in current bio-ontologies such as GO, it starts
to become a problem when, for example, cardinality constraints are used to con-
strain the overall number of parts (as this can differ in different divisions of the
whole into parts).

Certain recent OWL extensions allow the representation of arbitrarily struc-
tured objects, such as rules [1] and description graphs [5]. However, these forma-
lisms require strong conditions on how the underlying ontology is to be modelled
to remain within what is decidable in the underlying logic, for example, enforc-
ing strict property separation between description graphs and OWL axioms,

and restriction only to known individuals in the body of the rules [2]. Our ap-
proach focuses on evaluating the pragmatic tractability of certain patterns while
remaining well within the standard, decidable, DL fragment of OWL 2.

Furthermore, we have hypothesized that large-scale migration to more ax-
iomatic representation of biomedical structure might be accompanied by a pro-
hibitively large performance decrease on the side of the DL-based reasoners com-
monly used in ontology development. Should this be the case, it stands as an
obstacle for the migration of existing large-scale ontologies towards greater se-
mantic complexity. To evaluate the performance consequences on reasoners for
the different complexity patterns we implemented a T-Box generator that auto-
matically creates test ontologies according to the patterns.

Although the idea of ontology generators in general is not new (see, for
example, [6] or the OWL DL Generator’), many of those are restricted to a
certain semantics and do not allow expressivity parameter adjustment neces-
sary for mereotopology pattern testing. Our T-Box generator allows for control
over many parameters that other generators miss and which furthermore allows
specifically for mereotopology performance testing. With the above described
functionality it could extend current Ontology Editor Tools and could be eas-
ily provided as e.g. a Protégé 4 plugin. Another possibility is the inclusion in
existing OWL DL benchmarking frameworks [4].

The reasoning time acceptable for a particular ontology engineering effort is
dependent on the time available during the ontology life cycle and the phase in
which reasoning is applied. Examples of reasoning tasks might be to apply a con-
sistency check before ontology release, or after any change at development time,
or even a consistency check used as part of the ontology public user interface in
which reasoning forms part of an application use case.

At development time, the time allowed for reasoning is dependent on the
frequency at which reasoning is to be carried out, which is a function of the
number of people performing changes on the ontology over time and on their
expertise level. Having only one knowledgeable developer might require fewer
reasoning checks as when three novices are actively changing the ontology. The
acceptance of reasoning time is proportional to the ratio of the development
session time to reasoning time, e.g. for a one hour editing session 30 minutes
reasoning time is certainly not acceptable, whereas for an 8 hour session it might
seem reasonable.

As regards our performance results, we found an expected decrease in rea-
soner performance with increase in ontology complexity, and in particular a
dramatic decrease in performance with the use of cardinality constraints. In or-
der to still be able to make the best out of the available resources, we suggest
structural simplifications of the desired semantic complexity i.e. the transfor-
mation from a complex representation to a less complex and more performant
representation.

7 http: / /knowledgeweb.semanticweb.org/benchmarking_interoperability /-
OWLDLGenerator/

6 Conclusion

For the modeling in the biomedical domain mereotopology (i.e. parthood and
connectedness) is of high importance for accurate representation. Together with
the considerable size of ontologies in the biomedical domain this can provide
challenges for reasoners.

To evaluate and predict the reasoning performance of different reasoners we
developed a T-Box generator which allows for the parameterized creation of
ontologies. As expected, reasoning time increases with growing complexity and
size of the ontology. Further research will include other reasoners and a larger
set of ontology patterns.

Acknowledgments

This work was partly supported by the Deutsche Forschungsgemeinschaft (DFG)
grant JA 1904/2-1, SCHU 2515/1-1 GoodOD (Good Ontology Design).

References

1. Glimm, B., Horridge, M., Parsia, B., Patel-Schneider, P.F.: A syntax for rules in
OWL 2. In: Proc. of OWL Experiences and Directions 2009 (OWLED 2009) (2009)

2. Hastings, J., Dumontier, M., Hull, D., Horridge, M., Steinbeck, C., Sattler, U.,
Stevens, R., Horne, T., Britz, K.: Representing chemicals using OWL, description
graphs and rules. In: Proc. of OWL: Experiences and Directions (OWLED 2010)
(2010)

3. Jansen, L., Schulz, S.: Grains, components and mixtures in biomedical ontologies.
Journal of Biomedical Semantics to appear (2011)

4. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a Complete OWL
Ontology Benchmark. In: The Semantic Web: Research and Applications, chap. 12,
pp- 125-139. Lecture Notes in Computer Science

5. Motik, B., Cuenca Grau, B., Sattler, U.: Structured objects in OWL: representation
and reasoning. In: Proc. of the 17th International World Wide Web Conference
(WWW 2008). ACM, Beijing, China (2008)

6. Ongenae, F., Verstichel, S., De Turck, F., Dhaene, T., Dhoedt, B., Demeester, P.:
OTAGen: A tunable ontology generator for benchmarking ontology-based agent
collaboration. Computer Software and Applications COMPSAC 08 (2008)

7. Rosse, C., Jr, M.J.: The foundational model of anatomy ontology. In: Burger, A.,
Davidson, D., Baldock, R. (eds.) Anatomy Ontologies for Bioinformatics: Principles
and Practice, pp. 59-117. Springer, London (2007)

8. Shearer, R., Motik, B., Horrocks, I.: HermiT: A highly-efficient OWL reasoner. In:
Dolbear, C., Ruttenberg, A., Sattler, U. (eds.) Proceedings of the 5th Workshop
on OWL: Experiences and Directions. Karlsruhe, Germany (2008)

9. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. Journal of Web Semantics 5, 51-53 (2007)

10. The Gene Ontology Consortium: Gene ontology: tool for the unification of biology.
Nat. Genet. 25, 25-9 (2000)

11. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
In: Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006). pp. 292—
297. Springer (2006)

