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Abstract. OWLIM is a family of semantic repository components that
comprise a native RDF store, a reasoner and a query answering engine.
The reasoner is based on R-entailment defined by ter Horst, where in-
ference rules are applied directly to RDF triples. Each rule is made up
of a number of premises and conclusions, each of which is an RDF triple
pattern with variables allowed at any position. This paper describes an
implementation of the OWL 2 RL and OWL 2 QL profiles using this
scheme, what modifications were necessary to the rule-engine and what
features of the profiles could not be implemented or were modified to
make implementing them practical.
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1 OWLIM

The OWLIM [10, 5] family of semantic repository components is implemented in
Java [1] and packaged as a Storage and Inference Layer (SAIL) for the Sesame
openRDF framework [7]. They are comprised of a native RDF store, a reasoner
and a query answering engine that supports the SeRQL [6] and SPARQL [13]
languages. The reasoner uses predominantly forward-chaining to apply the se-
lected inference rules directly to RDF statements (triples), although statements
are actually stored as quads — triples plus named graphs (also called ‘context’ in
Sesame terminology). The rule-language is based on R-entailment [17] defined
by ter Horst.

There are two editions of OWLIM: SwiftOWLIM and BigOWLIM, that
share the same rule-language and are identical in terms of reasoning expres-
sivity and integration. Whereas SwiftOWLIM is an entirely in-memory system,
BigOWLIM uses a file-based storage layer and has a number of query and rea-
soning optimisations. Most significantly, BigOWLIM has special support for
owl:sameAs by maintaining equivalence classes for individuals. During query-
answering, equivalence classes are enumerated in a backward-chaining manner.
Typically, SwiftOWLIM can manage millions of explicit statements on desktop
hardware, whereas BigOWLIM can manage billions of statements and multiple
concurrent user sessions.

Several standard rule-sets are built into all editions of OWLIM, namely:
RDFS, OWL-Horst (similar to pD*), OWL-Max (RDFS with most of OWL
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Lite) and recently the OWL 2 profiles RL and QL. Users are able to build their
own custom rule-sets using datalog like rules with inequality constraints. The
general format for defining rules is shown in figure 1.

Id: <Rule_Id>
<Premise #1> [Optional inequality constraints]

<Premise #n> [Optional inequality constraints]

<Conclusion #1> [Optional inequality constraints]

<Conclusion #m> [Optional inequality constraints]

Fig. 1. The OWLIM rule format

Premises and conclusions are triple patterns with variables in any position.
Every premise may additionally contain inequality constraints stating that the
value of one or more variables in the statement is not a blank node or must
not be equal to a full URI, a short name or the value of another variable from
the same rule. If an inequality constraint does not hold, then the rule does
not fire. Conclusions may also have inequality constraints. In the event that
a conclusion constraint does not hold, the rule will still fire, except that the
conclusion adjacent to the failing constraint will not be inferred. Free variables
in the head of a rule (without a binding in the body) are used to infer new blank
nodes.

The example in figure 2 shows an implementation of the OWL 2 RL functional
property rule prp-fp. The symbols p, x, y1 and y2 are variables and there is a
single constraint in the rule body that prevents the rule from firing if y1 is equal
to y2.

Id: prp_fp
p <rdf:type> <owl:FunctionalProperty>
xpyl [Constraint y1 != y2]
X py2

y1l <owl:sameAs> y2

Fig. 2. An example rule using the OWLIM rule language

BigOWLIM also supports consistency checks using a syntax similar to rule
definitions, but without the conclusions (rule head).
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2 OWL 2 RL

The OWL 2 Profiles specification [11] provides a definition for OWL 2 RL, which
is described as follows: “The OWL 2 RL profile is aimed at applications that
require scalable reasoning without sacrificing too much expressive power”. The
profile is designed to be amenable to implementation on rule-engines and to
assist with this the specification provides an RDF-Based Semantics in the form
of first-order implications that should be applied directly to RDF graphs.

In order to make it feasible to implement this profile on rule engines while
providing some “desirable computational guarantees”, certain restrictions are
made on the use of OWL 2 [12] constructs. In particular, there is no require-
ment for existential quantification or non-deterministic reasoning. OWL 2 RL is
therefore defined in two ways:

— By restrictions placed on OWL 2 Full in the use and position of certain
OWL 2 language features;

— As a set of entailment rules to be applied to the RDF serialisation of an
OWL ontology, where these rules represent a partial axiomatisation of the
complete OWL 2 RDF-Based Semantics [15].

In order to distinguish these two definitions, the term OWL 2 RL/RDF rules
will be used to identify the latter case.

The first-order implications provided in the W3C specification were used as a
starting point for the implementation of OWL 2 RL/RDF rules using OWLIM’s
rule notation. These rules are grouped in to separate tables for defining the
semantics for: equality, property axioms, classes, class axioms, datatypes and
schema vocabulary. The rules themselves are offered as first-order implications
over a ternary predicate T representing the entire graph of RDF statements —
variables are allowed in any position. The rules take a variety of forms:

triple pattern rules The rule body and head are made up of atomic formulae
representing triples in the RDF graph;

assertional rules The rule body is empty, in which case they can be con-
sidered as being always applicable, e.g. rule cls-thing that asserts that
owl:Thing rdf:type owl:Class;

consistency checks The head of these rules contains false only, in which case
the input RDF graph should be considered inconsistent when the premises
of the rule body hold;

list rules These rules make use of a shorthand notation for processing RDF
collections [9], e.g. when defining classes as the intersection or union of a
closed set of classes;

data-type rules These rules require special processing for data-types, e.g. rule
dt-eq that asserts that 1t1 owl:sameAs 1t2 for all literals 1t1 and 1t2
with the same data value.

Triple pattern rules, assertional rules and consistency checks are straightfor-
ward to implement using OWLIM’s rule language. However, list rules involve
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T(h, rdf:first, el) |T(h, rdfirest, z2)
T(z2, rdf:first, €2) |T(z2, rdf:rest, z3)

T(zn, rdf:first, en)|T(zn, rdf:rest, rdf:nil)

Fig. 3. The expansion of LIST[h,e1, ..., ex]

processing RDF collections [9] that are expressed in the partial axiomatisa-
tion using an informal ellipsis notation: LIST[h,eq,...,e,]. These atoms are
shorthand for an arbitrary length series of RDF statements that describe a
closed set of values [eq,...,e,] identified by h (often a blank node). This ex-
pansion, shown in figure 3, is used in the definition of the following OWL 2 RL
rules; eq-diff2, eq-diff3, prp-spo2, prp-adp, prp-key, cls-intl, cls-int2,
cls-oo0, cls-uni, cax-adc, scm-int, scm-uni. There are two ways of handling
such rules. They can either be expressed as a set of recursive rules that traverse
the RDF list structures at run-time or they can be regarded as templates that,
for a given RDF input document, can be translated to a set of triple pattern
rules as part of a preprocessing step. Such a preprocessing step would require
an examination of the actual definitions used in the input ontology in order re-
write some of the entailment rules long-hand, e.g. if the input ontology contains
a definition of a property chain called :uncle in terms of the chain :parent
and :brother then the rule prp-spo2 shown in figure 5 can be used as a tem-
plate to instantiate an ontology-specific rule shown in figure 4 that hard-codes
the property chain. However, preprocessing is not a practical solution, because

prp-spo2/ | T(?u1,: parent, Tuz)
uncle T(?uz, : brother, 7usg) | T(?u1,: uncle, Tus)

Fig. 4. An example instantiation of prp-spo2 for a specific input ontology

it requires the re-computation of entailment rules for each input ontology and
whenever an ontology changes — this is before any actual entailments are com-
puted or re-computed. In the case of OWLIM, this is further complicated by the
fact that rule definitions in OWLIM are compiled to Java byte code for faster
execution making them difficult to modify at run-time.

Therefore the requirement is to find a rule-set that can be expressed using
OWLIM’s rule-language that captures the semantics of OWL 2 RL/RDF rules
without requiring any other processing. This poses problems, due to the fact that
list rules do not have a corresponding first-order construction, e.g. see OWL 2 RL
rule prp-spo?2 in figure 5.

The Rule Interchange Format (RIF) W3C Working Group [4] is chartered
to specify a format for rules that functions as an inter-lingua so that rules can
be shared across diverse systems. The working group have made several W3C
recommendations, including (amongst others):
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T(?p, owl:propertyChainAxiom, 7x)
LIST[?x, ?p1, .. ., ?px]

prp-spo2 | T(?uq, ?p1, Tus2) T(?u1, 7p, 2Un+1)
T(?ug, ?pz, ?Ug)

T(?’U,n, ?pTH ?Un+1)

Fig.5. OWL 2 RL entailment rule with an example of using LIST[h, e1, ..., en]

Core A core dialect (subset of BLD and PRD) similar in expressivity to Data-
log[18];

BLD The Basic Logic Dialect corresponding to definite Horn rules with equality,
plus extensions for XML Schema data-types and F-logic frames and objects;

PRD Production Rule Dialect, which is similar to BLD, but where rules can
affect changes, such as modifying data;

FLD A Framework for Logic Dialects for specifying all RIF logic dialects;

DTB Datatypes and Built-Ins, i.e. the supported datatypes, built-in functions
and predicates that are supported by RIF dialects;

Further to this, the working group have published a W3C note [14] showing how
OWL 2 RL/RDF rules can be implemented using RIF-Core. This note was used
as the basis for creating the OWL 2 RL rule-set for OWLIM. In order to under-

Forall 7p 7last ?pc 7start (

?start[?p->7last] :- And (
?p [owl:propertyChainAxiom->7pc]
_checkChain(?start 7pc 7last) ))

Forall ?start 7pc 7last 7p 7tl (
_checkChain(?start ?pc 7?last) :- And (
?pclrdf:first->7p rdf:rest->7tl]
?start [7p->7Tnext]
_checkChain(7next 7tl 7last) ))

Forall 7start ?pc 7last 7p (
_checkChain(?start ?pc 7last) :- And (
?pclrdf:first->?p rdf:rest->rdf:nil]
?start [?p->7last] ))

Fig. 6. The three RIF rules for implementing prp-spo-2

stand how RIF-Core is used to model the OWL 2 RL rules that use lists, consider
the RIF implementation of prp-spo2 that consists of three rules that utilize
an auxiliary ternary predicate _checkChain as shown in figure 6. These three
(recursive) rules infer tuples in the ternary predicate _checkChain that work
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backwards from the end of lists of predicates forming links between individuals
and the last individual in a chain that use the predicates in the same order. If
the chain is indeed referred to by a property chain (owl:propertyChainAxiom)
then the final inference is to connect the first and last individual in any chain
with the named property chain. Many more inferences are created this way when
compared to the preprocessing approach, but this technique works for arbitrary
length collections.

However, OWLIM was designed with R-entailment in mind, where rules are
applied directly to the entire graph of stored RDF triples. This presents a prob-
lem for implementing auxiliary predicates, because triples are the input to the
rule engine (any context is simply ignored) and the output of the rule engine
(also triples) are added to the native triple store.

One possible to solution is to use a kind of reification of the tuples belonging
to auxiliary predicates and store these in the normal statement indices. This is
possible using OWLIM, because of the fact that unbound variables in rule heads
are used to infer new, unique blank nodes that can be used to identify a new
tuple and RDF triples can be used to associate the ‘tuple’ with its members. For
example, the following tuple:

_checkChain(start pc last)
could be written using three RDF statements (where b is a blank node):

b onto:_checkChainl start
b onto:_checkChain2 pc
b onto:_checkChain3 last

Although such a technique produces the correct inferences, it has a number of
drawbacks, namely:

— Every tuple for an auxiliary ternary predicate requires a new blank node and
three RDF triples, which increases storage and computation complexity;

— Due to the fact that OWLIM does not create any truth maintenance infor-
mation, it is impossible to know which blank nodes were created from which
inference rule and premises, therefore such inferences can not be retracted
when the supporting premises no longer hold.

A Dbetter method to store tuples for ternary predicates was devised that makes
use of the fact that OWLIM stores and indexes quads — RDF triples with con-
text. Such an arity-4 collection can be used to store ternary predicate names
their three members. Therefore, in order to support the RIF style implemen-
tation rules that use auxiliary ternary predicates (essentially all rules that use
LISTI[h,eq,...,€,]), the OWLIM rule language was extended to include the op-
tional context, i.e. quad patterns are now supported in rule premises and con-
clusions. This ability to specify the context for a statement pattern provides a
means to assert tuples for ternary predicates. Continuing with our example, the
final version of the OWLIM rules that correspond to the RIF implementation
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Id: prp_spo2_1
p <owl:propertyChainAxiom> pc
start pc last [Context <onto:_checkChain>]

start p last

Id: prp_spo2_2
pc <rdf:first> p

pc <rdf:rest> t [Constraint t != <rdf:nil>]
start p next

next t last [Context <onto:_checkChain>]
start pc last [Context <onto:_checkChain>]

Id: prp_spo2_3
pc <rdf:first> p
pc <rdf:rest> <rdf:nil>
start p last

start pc last [Context <onto:_checkChain>]

Fig. 7. The three OWLIM rules equivalent to the RIF implementation of prp-spo-2

of prp-spo2 are given in figure 7. The ‘name’ of the auxiliary predicate, in this
case _checkChain, is used in the context position of quads.

In other words, the context <onto:_checkChain> is used to associate in-
ferred RDF statements with the _checkChain auxiliary ternary predicate. This
technique allows the existing RDF statement storage and indexing mechanisms
to be reused for this and other auxiliary predicates for all rules that use the
LISTIh,ey,...,ey,] construct, given at the start of this section.

The only difficulty now is that intermediate statements (statements with
the onto:_checkChain context) generated by the prp-spo2 OWLIM rules are
unsound relative to the semantics of OWL 2 RL. Without any other modification,
such statements would be used as input to query answering, when in fact they
are simply intermediate values generated as part of the reasoning process. In
order to avoid ‘polluting’ the database model, further modifications to the rule
engine and storage mechanisms were required. Even though such intermediate
tuples are fully fledged RDF statements, they are flagged in the indices as being
the result of the reasoning process and these statements are skipped by the query
answering engine.

Datatype rules provide type checking and value equality/inequality checking
for typed literals across a set of supported data types. OWLIM does not pro-
vide the extended support for typed literals, introduced with the Dx entailment
extension of the RDFS semantics [16]. Although such support is conceptually
clear, it does not scale to large dataset sizes in a rule-based, forward-chaining
environment. For example, rule dt-diff requires that an owl:differentFrom
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statement is inferred for all non-equal pairs of literals — for a dataset with one
million unique literals (a small number by today’s standards) this will infer an-
other trillion statements (the Cartesian product).

3 OWL 2 QL

The OWL 2 QL profile [11] is designed so that data stored in a standard relational
database system can be queried through an ontology via a simple rewriting
mechanism, i.e. by rewriting the query into an SQL query that is then answered
by the RDBMS system, without requiring any changes to the data. OWL 2 QL
is based on DL-Liteg, a variant of DL-Lite [8] that does not require the unique
name assumption.

At first sight, the design constraints of OWL 2 QL would seem to make it
unsuitable for implementation in a forward chaining, rule-based environment,
where OWLIM computes all inferences at the time data is loaded or modified.
However, an initial analysis showed that the bulk of the semantics of OWL 2 QL
can be captured in rules, therefore, for the purpose of expanding the range of rule-
sets included with OWLIM and to offer users a wider choice in the expressivity
versus complexity spectrum, a rule-set for this OWL profile was developed. The
most problematic cases for modelling the semantics of OWL 2 QL arise due to
existential quantification as demonstrated in the OWL 2 QL ontology in figure 8.

Prefix ( : = <http://example.org/> )

Ontology (
SubClass0f (:GrandPa ObjectSomeValuesFrom (:fatherOf owl:Thing))
ClassAssertion ( :GrandPa :Tom ) )

Fig. 8. An example OWL 2 QL ontology using existential quantification

Using OWL 2 QL semantics, the conjunctive query q(x) :- father0f (x,y)
should return :Tom as a result. The above ontology does not define an object
that :Tom is the father of, it only asserts that there must be one, because :Tom
is a :GrandPa and so must have a :fatherOf relationship with something.

OWLIM’s ability to infer new blank nodes during rule evaluation can be
used to handle existential quantification. The rule shown in figure 9 is used to
model ontologies of the form shown in figure 8. In this example, the variable b in
the rule head is not bound, so OWLIM will infer a statement containing a new
blank node in this position. In combination with the example ontology shown
above, this rule will assert that each individual of type :GrandPa is a father of
some blank node. Note the constraint x != blank, which stops the rule firing if
x is a blank node, preventing a possible infinite, recursive execution, e.g. if the
property p has a range of a, then rule prp-rng would infer that the new blank
node is of type a and rule exst1 would fire again for this blank node and so on.
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Id: exstl
y <owl:onProperty> p
y <owl:someValuesFrom> <owl:Thing>
a <rdfs:subClass0f> y
x <rdf:type> a [Constraint x != blank]

Fig. 9. An example OWL 2 QL ontology using existential quantification

The other OWL 2 QL constructions were straightforward to model and the
implementation passed all W3C tests [2] except for five. Two of these deal with
concluding owl:distinctMembers for a list of individuals, where for efficiency
reasons owl:differentFrom pairs are inferred for all combinations of individuals
in the list. In two other tests, triples of the form :a owl:differentFrom :b are
inferred, where in OWLIM owl:differentFrom is modelled with a consistency
check to prevent an explosion in inferred statements. This can occur whenever
two classes are declared owl:disjointWith each other and have many mem-
bers, in which case an :a owl:differentFrom :b statement is inferred for each
unique pair of members a and b of the two classes (a Cartesian product).

The last test [3] demonstrates the effect of the comprehension principles in
OWL. It states that for every OWL class C there is a class constructed from an
anonymous union containing only C. This is impractical in a forward-chaining
environment and its usefulness to the end user is questionable.

4 Conclusions

Rule-sets were created for OWLIM to provide the semantics of the OWL 2
profiles RL and QL. Due to the fact that OWL 2 QL was designed for query
rewriting over relational databases, it was discovered that an efficient, scalable
implementation using forward-chaining was problematic. While the authors are
confident of covering a large part of the semantics, no claim for completeness is
made for this profile.

On the other hand, because OWL 2 RL was designed specifically for rule-
based systems, the rule-set for this profile was more straightforward to imple-
ment, even though it required extensions to the rule-engine to support auxiliary
predicates. Using this rule-set, OWLIM is both sound and complete with respect
to the semantics of OWL 2 RL/RDF rules, except for the missing support for
datatype reasoning. This claim is made based on the 1:1 correspondence between
required entailment rules and the implementation in the OWLIM rule-set, and
verified using the OWL working group’s conformance tests.
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