
Advanced ontology visualization
with OWLGrEd

Jānis Bārzdiņš, Kārlis Čerāns,
Renārs Liepiņš, Artūrs Sproģis

Ontology visualization task

Ontologies represent knowledge

Knowledge – not only for computers, but also for people

How to create, share, learn ontologies?

Ontology visualization task: visual rendering, visual editing

Tools exist for textual (e.g. Protege) and graphical ontology
rendering and editing

OWLGrEd editor: compact graphical + textual notation,
based on UML class diagrams and OWL Manchester syntax

OWLGrEd: Main concepts
UML Class diagram notation:

 convenient for class-based modeling,
 apply this to OWL 2.0 ontology modeling

– UML Package <-> OWL Ontology

– UML Class <-> OWL Class

– UML Association End <-> OWL Object Property

– UML Attribute <-> OWL Data Property

– UML generalization <-> OWL SubClassOf axiom

OWL features without direct UML Class diagram counterpart:

– equivalent, disjoint classes, some OWL class expressions:
use custom / adopted graphical syntax

– OWL class expressions: use textual Manchester syntax

Mini-University ontology in OWLGrEd

• classes, properties, individuals
• class as single domain / range for a property
• some cardinality restrictions
• generalization, generalization sets, complete, disjoint
• enumerations – simple data ranges
• composition – only visual representation

Person
person_name:string
personID:string
sex:Sex

Teacher

Course
course_name:string

Level
levelCode:integer
levelName:string

{disjoint}

One:Level
levelCode=1
levelName="One"

Two:Level
levelCode=2
levelName="Two"

Three:Level
levelCode=3
levelName="Three"

Four:Level
levelCode=4
levelName="Four"

Lecture

{disjoint}
{complete}

Assistant Professor

Student

Mandatory_course Optional_course

<<Enumeration>>
Sex

"male"
"female"

Associate_Professor

level 0..1

relates

takes {<relates}

containingCourse

lectureInCourse

teaches
{<relates}

isTaughtBy

Extended UML notation

• Equivalent, disjoint classes: note with connectors, binary connectors, textual form
• Single logical meaning – different graphical presentations
• Class expressions in Manchester notation: <, = and <> compartments.
• Anonymous class depicted visually, if used as a domain/range for a property.
• Graphical restriction forms: some/only, cardinality restrictions
• Enumerated Class

Person
"The persons include both students and
teachers. A person can be both a
student and a teacher at the same time."
person_name:s tring
personID:s tring
sex:Sex

Teacher
= Academ ic_staff

Student

Assistant

Associate_Professor

Professor

{disjoint} {complete}
Course

< level max 1 Level
course_name:s tring

Mandatory_course
< isTaughtBy only Professor
<> Optional_course

Optional_course

{disjoint}
Lecture

Two:Level
levelCode=2
levelName="Two"

Four:Level
levelCode=4
levelName="Four"

<<dis joint>>

Academic_staff
= Teacher

<<Comment>>
"The persons
include both
s tudents and
teachers . A person
can be both a
s tudent and a
teacher at the
sam e time."

<<EnumeratedClass>>
{isComplete}

Level
levelCode:integer
levelName:s tring

One:Level
levelCode=1
levelName="One"

Three:Level
levelCode=3
levelName="Three"

<<Enumeration>>
Sex

"m ale"
"fem ale"

level 0..1

containingCourse
lectureInCourse

relates

takes {<relates} {<>teaches}

teaches
{<relates}
{<>takes}

isTaughtBy

isTaughtBy
only

African Wildlife ontology in the editor

Note: free comments (Botanics, Zoology) used for extra conceptualization

OWLGrEd: usage patterns
Ontology import/export: OWLGrEd  Protege 4.1.

Uses Protege OWLGrEd plugin

Usage pattern 1: Ontology visualization and editing

• Create/import OWL 2.0 ontology using Protege 4.1

• Export to OWLGrEd / TDA (exporting options available)

• Customize ontology visualization (automatic re-layouting, manual layout and
appearance customization)

• Ontology editing facilities available

Usage pattern 2: Visual ontology creation

• Create ontology using OWLGrEd visual ontology editing facilities

• Export the created ontology to Protege for interoperability with reasoners and/or
other ontology management tools

OWLGrEd: state of the art

Stable release: http://owlgred.lumii.lv
 - standalone OWLGrEd tool
 - Protege plugin for interoperability

News:
Works with Protege 4.1.
Full (almost) support of OWL 2.0
Supports: data ranges, keys, property chains, ontology imports,

annotations (mostly)
No graphical representation: some annotations, e.g. axiom

annotations.
Built-in advanced modeling constructs: composition, free comment

(no representation in OWL).

http://owlgred.lumii.lv/

OWLGrEd: Basic visualization

• Local visual style changes for any item (color, shape, text
font, etc.)

• Globally setting custom styles for certain element types
(e.g. all classes, all object properties, all notes)

No effects outside OWLGrEd

Visualization annotations: a naïve way
• Introduce annotation property for visual style, e.g.

Declaration(AnnotationProperty (og:ClassDisplayStyle))
• In ontology export, annotate the user ontology items (e.g. classes, properties,

individuals) that have specific style, e.g.
AnnotationAssertion(og:ClassDisplayStyle :Person
"bkgColor=green, borderWidth=2, 3D=true")

• In ontology import, recognize the og:ClassDisplayStyle-annotations to set the
custom style of the class box.

• OWLGrEd++: group visual styles

and attach to user-defined
annotation properties

AcademicProgram
programName:string

Course
courseName:string

Thing{owl}

{disjoint}

Teacher
Student

Person
personName:string

teaches

takes

belongsTo
includes

Visual annotation framework idea
• Suppose there is a built-in annotation property in OWLGrEd for visual style, e.g.

Declaration(AnnotationProperty (og:ClassDisplayStyle))

• Let the user (e.g. a power user) introduce a domain-specific annotation property
Declaration(AnnotationProperty (user:ImportantClass)) ..

• .. and annotate the user annotation by the visual annotation:
AnnotationAssertion(og:ClassDisplayStyle user:ImportantClass
"bkgColor=green, borderWidth=2, 3D=true")
(These definitions are stored in visual profile ontology; handled by OWLGrEd in a
special way)

• In ontology import, set the custom style of the class box whenever the class has
been marked by the user annotation property:
AnnotationAssertion(user:ImportantClass :Person "true")

• A custom visual specification language
has been created!

AcademicProgram
programName:string

Course
courseName:string

Thing{owl}

{disjoint}

Teacher
Student

Person
personName:string

teaches

takes

belongsTo
includes

Framework for «Annotation Visualization»
• Let the user (e.g. a power user) introduce a domain-specific annotation property

Declaration(AnnotationProperty (user:ImportantClass)) ..

• Annotate the user annotation by the visual annotation:
AA(og:ClassDisplayStyle user:ImportantClass
 "bkgColor=green, borderWidth=2, 3D=true")

• Set the custom style whenever: AA(user:ImportantClass :Person "true")

Visual annotations to user annotation properties– much more powerful concept, allows
specifying visualizations for any annotation properties:

- Style annotations (the annotation properties created to determine visual style)

- Value annotations («normal» annotation properties, carrying a meaningful annotation
value, possibly to be displayed)

Visual settings – where (e.g. inside the box/in outside note) and how (e.g. the field style) to
display the annotation value.

Annotation value entry settings: e.g. presence of language/datatype fields, placement of
the field on property sheet, supporting event procedures.

AcademicProgram
programName:string

Course
courseName:string

Thing{owl}

{disjoint}

Teacher
Student

Person
personName:string

teaches

takes

belongsTo
includes

Example: annotation placement inside/outside

Plant

Thing {owl}

Tasty-plant

Lion

Carnivore
= Animal
 and (eats some Animal)

<<Label>>
"Panthera leo"

Animal
weight:integer

Giraffe
Label("giraffa
camelopardalis")

Herbivore
= Animal
 and (eats only
 (Plant
 or (is-part-of only Plant)))

Tree

Leaf

eaten-by

is-part-of
only

eaten-by some [1..*]

eats eaten-by-animal
{<eaten-by}

eats
only

eats only

eaten-by
some

[1..*]

<<disjoint>>

is-part-of
{tran}

Example: Database expression specification

Specification in OWLGrEd: annotation profile diagram, to be used by
user ontology diagram.

• AA(A(og:inputForm og:ListItem)
 A(og:displayElemStyle “bkgColor=’blue’”)
 og:aClassShowMode :ClassDB og:Style)

• AA(A(og:aDependency :ClassDB)
 A(og:displayFieldStyle “picture=’db.jpg’”)
 og:aClassShowMode :DBExpr og:ValueInside)

ClassDB
OWL Class

DBExpr
OWL Class

UML stereotype coverage:
- Style specification
- Dependent values («tagged

values» in UML).
Only visualization aspect here
(the OWL format allows
attaching any annotations also
without any «stereo-styles»)

Example: UML Composition and derived union

AA(A(og:inputForm og:CheckBox)
 A(og:displayElemStyle “lineStart=’diamond’”)
 og:aObjectPropertyShowMode user:isComposition og:Style)
AA(A(A(og:compID “name”) og:displayValuePrefix “/”)
 A(og:inputForm og:CheckBox)
 A(og:displayStyle “isVisible=false”)
 og:aObjectPropertyShowMode user:isDerivedUnion og:Style)
AA(user:isComposition :includes “True”)
AA(user:isDerivedUnion :relates “True”)

The two user annotations allow to obtain typical UML visualizations for UML
composition and derived union constructs for object properties (for data property
annotation visualization similar constructions are used).

Conclusions
• Work in progress (full annotation visualization ontology,

implementation in the editor)

• Annotating the annotation properties – a powerful
principle for defining high-level ontology visualization
constructs

• UML constructs – composition, property derived unions –
special examples; UML stereotype functionality covered
and extended

• Tool building platform – can discuss graphical extensions to
OWLGrEd that capture «logical» meaning

• Meanwhile: http://owlgred.lumii.lv

http://owlgred.lumii.lv/

http://owlgred.lumii.lv/

Thank you!

The OWLGrEd development team:
Jānis Bārzdiņš, Kārlis Čerāns,

Renārs Liepiņš, Artūrs Sproģis
Institute of Mathematics and Computer Science,
University of Latvia

http://owlgred.lumii.lv/

Implementation: Transformation Driven Architecture

• MDA approach. Separation of logical and presentation activities.
• Development of universally re-usable user interface engines; the graphical diagramming

engine employs advanced layouting facilities.
• Logical activities based on metamodels and model transformations.
• User actions recorded as events. Transformations create commands for engines.
• Events and commands stored in the repository (as other metamodel classes).

Implementation: Tool Definition Framework

A framework for defining graphical domain specific tools, built on top of TDA, uses Graph
Diagramming Engine, User Dialogue (Form) Engine

Implementation of a concrete tool (e.g. OWLGrEd): instance of TDMM + supporting model
transformations for advanced behaviour; visual configurator available

Successful applications: OWLGrEd; several DST; UML class, activity diagram editors

	Advanced ontology visualization with OWLGrEd
	Ontology visualization task
	OWLGrEd: Main concepts
	Mini-University ontology in OWLGrEd
	Extended UML notation
	African Wildlife ontology in the editor
	OWLGrEd: usage patterns
	OWLGrEd: state of the art
	OWLGrEd: Basic visualization
	Visualization annotations: a naïve way
	Visual annotation framework idea
	Framework for «Annotation Visualization»
	Example: annotation placement inside/outside
	Example: Database expression specification
	Example: UML Composition and derived union
	Conclusions
	Slide Number 17
	Slide Number 18
	Implementation: Transformation Driven Architecture
	Implementation: Tool Definition Framework

