
Implementing OWL 2 RL

OWLED 2011, San Francisco, 06/06/2011

Implementing OWL 2 RL

and OWL 2 QL

rule-sets for OWLIM

Barry Bishop, Spas Bojanov

Ontotext

• Semantic technology developer1 established in 2000

• Global leader in semantic databases and semantic
annotation

• Staff: 55 employees plus contractors

• Unique technology portfolio:

Ontotext is a
Sirma Group
company

• Unique technology portfolio:

– Semantic Databases: high-performance RDF DBMS, scalable reasoning

– Semantic Search: text-mining (IE), Information Retrieval (IR)

– Web Mining: focused crawling, screen scraping, data fusion

– Web Services and BPM: WS annotation, discovery, etc.

#2Overview of Ontotext

[1] http://www.ontotext.com/

OWLIM

• OWLIM1 is a family of semantic repositories
– SwiftOWLIM and BigOWLIM

– Online user documentation2

• Storage and Inference Layer (SAIL) for Sesame
– Compatible with most RDF syntaxesCompatible with most RDF syntaxes

• RDF storage, reasoner, query-engine
– Forward chaining rule-entailment

– SPARQL and SeRQL query languages

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #3

[1] http://www.ontotext.com/owlim
[2] http://owlim.ontotext.com

SwiftOWLIM

• Free to use
– Partly open-source, but this is changing

• In memory
– Scales to tens of millions of statements on desktop hardware

– Persistence at shutdown/start-up– Persistence at shutdown/start-up

• Very fast
– Forward chaining rule-based reasoning

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #4

BigOWLIM

• Commercially licensed
– Enterprise grade RDF database

• File-based
– Scales to tens of billions of statements on basic server

• Advanced features
– Incremental retraction (without truth maintenance)

– Full-text search

– Geo-spatial extensions

– RDF Rank

– owl:sameAs optimisation

– Replication cluster

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #5

OWLIM – Rule Language

• R-entailment (ter Horst)
– Premises and conclusions are triple patterns

– Variables allowed in any position

– Inequality constraints

– Rules applied directly to RDF graph

• Example• Example

Id: prp_fp
p <rdf:type> <owl:FunctionalProperty>
x p y1 [Constraint y1 != y2]
x p y2

y1 <owl:sameAs> y2

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #6

OWL2 RL

• OWL2 profile
– Syntactic subset of OWL2

– Scalable, expressive

– RDF-based semantics defined by first order implications1

– Designed to be amenable to implementation on rule-engines

• Straightforward to implement on OWLIM?
– Problem 1: Data-type reasoning

– Problem 2: Rules that use lists (RDF collections2)

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #7

[1] http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules
[2] http://www.w3.org/TR/rdf-syntax/#collections

OWL2 RL – data-type rules

• Data-type rules need special programming
– Efficient implementation not obvious for a forward-chaining

reasoner, e.g. dt-diff:

T(lt1, owl:differentFrom, lt2)

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #8

for all literals lt
1

and lt
2

with

different data values

OWL2 RL – rules that use lists

• 12 rules use LIST[h, e1, …, en]

T(h, rdf:first, e1)
T(z2, rdf:first, e2)
...
T(zn, rdf:first, en)

T(h, rdf:rest, z2)
T(z2, rdf:rest, z3)
...
T(zn, rdf:rest, rdf:nil)

first

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #9

h e
1

first

rest

z
2

e
2

first

z
n

e
n

first

nil

rest

rest

OWL2 RL – List Rule Examples

• cls-int2:

• prp-spo2:

T(?c, owl:intersectionOf, ?x)
LIST[?x, ?c1, ..., ?cn]
T(?y, rdf:type, ?c)

T(?y, rdf:type, ?c1)
T(?y, rdf:type, ?c2)
...
T(?y, rdf:type, ?cn)

• prp-spo2:

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #10

T(?p, owl:propertyChainAxiom, ?x)
LIST[?x, ?p1, ..., ?pn]
T(?u1, ?p1, ?u2)
T(?u2, ?p2, ?u3)
...
T(?un, ?pn, ?un+1)

T(?u1, ?p, ?un+1)

OWL2 RL – List rule solution

• One solution: Pre-process for a specific ontology
– If the ontology is known, then rules can be re-written

– e.g. given:

– Create the rule:

T(?c, owl:intersectionOf, _:b)
LIST[_:b1, :Car, :LuxuryThing]

– Create the rule:

• Constraints
– Requires extra processing stage

– Assumes a fixed ontology

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #11

T(?y, rdf:type, :SuperCar) T(?y, rdf:type, :Car)
T(?y, rdf:type, :LuxuryThing)

OWL2 RL

• (Infinite) set of OWLIM rules?

T(?c, owl:intersectionOf, ?x)
T(?x, rdf:first, ?c1)
T(?x, rdf:rest, rdf:nil)
T(?y, rdf:type, ?c)

T(?y, rdf:type, ?c1)

(Intersection of a single class)

– And so on for 3, 4, 5, … classes

• Only practical for short lists

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #12

T(?c, owl:intersectionOf, ?x)
T(?x, rdf:first, ?c1)
T(?x, rdf:rest, ?x2)
T(?x2, rdf:first, ?c2)
T(?x2, rdf:rest, rdf:nil)
T(?y, rdf:type, ?c)

T(?y, rdf:type, ?c1)
T(?y, rdf:type, ?c2)

(Intersection of two classes)

OWL2 RL

• Different construction of rules
– Make necessary intermediate inferences to cope with lists of

any length

– Would allow the ontology to change

• Rule Interchange Format (RIF) working group have • Rule Interchange Format (RIF) working group have

done this1

– Translation of OWL2 RL rule implications to RIF Core

– Starting point for OWLIM implementation

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #13

[1] http://www.w3.org/TR/rif-owl-rl/#Appendix:_OWL_2_RL_ruleset_-_presentation_syntax

RIF – Example

• prp-spo2 in RIF Core using auxiliary predicate
(* <#prp-spo2> *)
Forall ?p ?last ?pc ?start (
?start[?p->?last] :- And (

?p[owl:propertyChainAxiom->?pc]
_checkChain(?start ?pc ?last)))

Forall ?start ?pc ?last ?p ?tl (
_checkChain(?start ?pc ?last) :- And (

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #14

_checkChain(?start ?pc ?last) :- And (
?pc[rdf:first->?p rdf:rest->?tl]
?start[?p->?next]
_checkChain(?next ?tl ?last)))

Forall ?start ?pc ?last ?p (
_checkChain(?start ?pc ?last) :- And (

?pc[rdf:first->?p rdf:rest->rdf:nil]
?start[?p->?last]))

RIF – Example

• Auxiliary predicate _checkChain
– Ternary predicate

– Used to infer relationship from all 'links' in a chain to the end

– If chain is complete then infer property chain property from first

to last individual

• However, OWLIM (R-entailment) applies rules • However, OWLIM (R-entailment) applies rules

directly to RDF statements
– No auxiliary predicates

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #15

OWLIM – auxiliary predicate solution

• OWLIM is a quad store
– It stores graph name for every triple

– Called 'context' in Sesame

• By using quads it is possible to store
– The name of an auxiliary ternary predicate– The name of an auxiliary ternary predicate

– The three members of tuples

• Solution
– Extend OWLIM rule language to specify context

– Hide these 'special' RDF statements from the query engine

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #16

OWLIM – Rule language extensions for context

• prp-spo2 in OWLIM
Id: prp_spo2_1

p <owl:propertyChainAxiom> pc
start pc last [Context <onto:_checkChain>]

start p last

Id: prp_spo2_2
pc <rdf:first> p

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #17

pc <rdf:first> p
pc <rdf:rest> t [Constraint t != <rdf:nil>]
start p next
next t last [Context <onto:_checkChain>]

start pc last [Context <onto:_checkChain>]

Id: prp_spo2_3
pc <rdf:first> p
pc <rdf:rest> <rdf:nil>
start p last

start pc last [Context <onto:_checkChain>]

OWLIM – Rule language extensions for context

uncle owl:propertyChainAxiom x1
x1 rdf:first parent
x1 rdf:rest x2
x2 rdf:first brother
x2 rdf:rest rdf:nil

• OWLIM prp-spo2 rules example
– Input data:

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #18

Lola parent Birgit
Birgit brother Klaus

prp_spo2_3 =>
Birgit x2 Klaus _checkChain

prp_spo2_2 =>
Lola x1 Klaus _checkChain

prp_spo2_1 =>
Lola uncle Klaus

– Leads to inferences:

OWLIM – OWL2 RL Support

• OWLIM was modified to use context in rules

• OWL2 RL fully supported, except some data-type

rules missing:
– dt-type2

– dt-eq– dt-eq

– dt-diff

– dt-not-type

• Performance
– Small loading degradation for data-sets that don't use OWL2-RL

features, e.g. property chains

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #19

OWL2 QL

• OWL2 profile1

– Syntactic subset of OWL2

– Designed for querying assertions via an ontology through query-

rewriting (LOGSPACE wrt. number of assertions)

– Effectively backward-chaining

• Doesn't look suitable for OWLIM
– Problem 1: OWLIM uses (mostly) forward-chaining reasoning

– Problem 2: OWL2 QL permits existential quantification

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #20

[1] http://www.w3.org/TR/owl2-profiles/#OWL_2_QL

OWL2 QL – Existential Quantification

• Consider this example:

Prefix (: = <http://example.org/>)
Ontology (
SubClassOf (:GrandPa

ObjectSomeValuesFrom (:fatherOf owl:Thing))
ClassAssertion (:GrandPa :Tom))ClassAssertion (:GrandPa :Tom))

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #21

OWL2 QL Existential Quantification

• Which is supported in OWLIM with this rule:

Id: exst1
y <owl:onProperty> p
y <owl:someValuesFrom> <owl:Thing>
a <rdfs:subClassOf> y
x <rdf:type> a [Constraint x != blank]x <rdf:type> a [Constraint x != blank]

x p b

• Exploits OWLIM's behaviour that unbound head

variables make new blank nodes

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #22

OWL2 QL Existential Quantification

• However, this does not work in all cases
– And it's dangerous in some

• Consider:
SubclassOf(Person ObjectSomeValuesFrom(hasParent owl:Thing))

SubclassOf(ObjectSomeValuesFrom(hasChild owl:Thing) Person) SubclassOf(ObjectSomeValuesFrom(hasChild owl:Thing) Person)

InverseOf(hasChild hasParent)

Person(tom)

• Rule exst1 infers:

tom hasParent b1

• and then

b1 hasChild tom, b1 type Person, and if b1 is a Person there must exist…

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #23

OWL2 QL – other non-conformance

• If two classes are declared disjoint
– Should infer that all pairs of members of each class are different

from each other – Cartesian product

– Instead, implemented with a consistency check – fires if an

individual is a member of both classes

• For every class C there is a class that is the union of {C}
– Forward-chaining -> infinite recursive class definition

• An individual related via disjoint properties to {a, b, c}
– Should infer a set of mutually exclusive individuals

– Instead, differentFrom pairs are inferred

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #24

OWL2 QL – conclusion

• No modifications required to OWLIM
– Apart from changes already made for OWL2 RL

• However, not complete
– Existential problems

– Some inferences too expensive or not possible– Some inferences too expensive or not possible

– Not complete

• But still passes most of the positive entailment tests

Implementing OWL 2 RL and OWL 2 QL rule-sets for OWLIM #25

