
SWRL-IQ: A Prolog-based Query Tool for OWL
and SWRL

Daniel Elenius

SRI International, Menlo Park, California, USA
elenius@csl.sri.com

Abstract. We present SWRL-IQ (SWRL Inference and Query Tool), a
Protégé plug-in that allows users to create, edit, save, and submit queries
to an underlying inference engine based on XSB Prolog. The tool distin-
guishes itself from other reasoning tools by a number of features, includ-
ing goal-oriented backward-chaining reasoning, flexible constraint han-
dling that allows for very declarative rules and queries, powerful SWRL
extensions, and tracing and debugging features for explanation of rea-
soning results. Together, these features allow SWRL to be used as a pow-
erful Logic Programming language that is tightly integrated with OWL
ontologies. SWRL-IQ was motivated by the needs of a very complex
problem domain: distributed military training and testing. The system
is implemented in a flexible way to allow for different syntax front ends
and reasoning back ends.

1 Introduction

SWRL-IQ1 (Semantic Web Rule Language Inference and Query tool) is a plug-
in for Protégé 3.x that allows users to create, edit, save, and submit queries
to an underlying inference engine based on XSB Prolog2. The inference engine
supports an expressive fragment of OWL, SWRL, and some extensions. The tool
has a powerful set of features not found together (or at all) in other query and
reasoning tools:

– Goal-oriented backward-chaining Prolog-style reasoning (as opposed to the
forward-chaining paradigm used by most Semantic Web rule engines.

– Constraint-solving based on CLP(R) (Constraint Logic Programming with
Reals). This allows for more declarative and powerful rules and queries.

– User-defined predicates with arbitrary arity.

– Powerful SWRL extensions for non-monotonic aggregation, limited higher-
order logic, and more.

– Saving query results to XML or CSV format.

– Tracing and debugging of inference results.

– A simple-to-use Java Attachments mechanism.

Together, these features allow SWRL to be used as a powerful Logic Pro-
gramming language that is tightly integrated with OWL ontologies.

1 SWRL-IQ can be downloaded at protegewiki.stanford.edu/wiki/SWRL-IQ
2 xsb.sourceforge.net



In Section 2 we briefly discuss our use cases that motivated the development
of SWRL-IQ. Section 3 forms the bulk of this paper, and describes our system
and how it differs from other reasoning engines. Section 4 discusses some related
work. Section 5 discusses extensions and improvements that we have planned for
the future.

2 Motivation

SWRL-IQ is part of a suite of solutions developed by SRI International to sup-
port military training and testing events, most recently in the Open Netcentric
Interoperability Standards for Training and Testing (ONISTT) and Analyzer for
Net-centric Systems Confederations (ANSC) programs, where we apply Seman-
tic Web technologies to address problems in this domain [1].

These events make use of many distributed, heterogeneous systems and re-
sources, such as simulation programs, virtual trainers, and live training instru-
mentation, connected to play different roles. The different systems are not usually
designed to be used in this fashion, and the domain is replete with interoper-
ability problems.

One of the most problematic areas is that of terrain representation [2]. For
most training and testing purposes, it is crucial for the simulation software to
have a realistic representation of the environment in which the events take place,
including elevation data, imagery, and 3D models of trees and buildings. It is
difficult to determine whether terrain data is adequate for a particular purpose,
because it lacks sufficient metadata, and has often gone through many processing
steps, some of which affect accuracy in subtle ways understood only by a handful
of experts. To analyze such problems, we trace the processing history of terrain
data in order to calculate the contribution to different types of error measures
by each processing step, using SWRL rules. The expressivity we need for these
kinds of problems goes beyond what existing Semantic Web tools provide. Thus,
we created SWRL-IQ, the subject of this paper.

3 Architecture and Features

Here, we describe the architecture and features of SWRL-IQ. For a more thor-
ough description, see the user manual bundled with the tool.

SWRL-IQ is a query answering system. As usual, the answer to a query
consists of all the possible bindings for the variables in it3. SWRL-IQ does not
answer questions about class subsumption (TBox reasoning), although TBox
axioms are still taken into account in the query reasoning. The syntax for queries
is the same as for SWRL rule bodies. The semantics of such a SWRL query is
straightforward. In Section 4 we discuss the differences with SPARQL queries.
SWRL-IQ supports most of the standard SWRL Built-ins (see the user manual

3 There is also support for anonymous variables, i.e. variables whose bindings are not
shown in the result. This is useful to avoid intermediate results cluttering up the
display of the final results. Anonymous variables have an underscore in the beginning
of the variable name, e.g., ? x instead of ?x.



for full details). We describe the support for arithmetic, constraints, and lists in
more detail below, as it goes beyond what might be expected.

SWRL-IQ is based on the Description Logic Programs (DLP)[3] approach
to bridging Description Logics (DL) and Logic Programs (LP). Roughly speak-
ing, DLP is the intersection of LP and DL, which corresponds to the definite
equality-free Datalog Horn fragment of First-Order Logic (FOL). In this ap-
proach, DL sentences are translated to Horn clauses. For example, the subclass
axiom C v D (where C and D are named classes) corresponds to the Horn clause
D(x) ← C(x). A large part of SWRL can also be supported by the DLP ap-
proach since SWRL rules already correspond to Horn clauses, assuming certain
class constructors are not used in the rules.

SWRL-IQ uses the Horn clauses generated from OWL and SWRL directly
as Prolog rules. The language is limited in several ways. As in [3] and OWL 2
RL, the language is assymetrical in that certain constructs are allowed in the
“head” (or superclass) position only, and others in the “body” (or subclass) po-
sition only. For example, someValuesFrom and unionOf are disallowed in the
head, and allValuesFrom is disallowed in the body. Negation and equality rea-
soning are not supported (complementOf, disjointWith, functional properties,
cardinalities, sameAs, differentFrom). Supported features include domain and
range, hasValue, and transitive and inverse properties.

The OWL part of the SWRL-IQ language is similar to OWL 2 RL (OWL
2 RL does not inherently include user-defined rules as in SWRL). The OWL 2
RL specification provides a rule set that can be used to implement the reasoning
inside a rule language, whereas SWRL-IQ uses the Horn meaning of OWL and
SWRL sentences directly as rules - in other words, it uses Prolog as the reasoner
in a “native” way. This difference has some implications on the supported lan-
guage constructs and reasoning. For example, OWL 2 RL supports some equality
reasoning, whereas SWRL-IQ does not, and the OWL 2 RL approach supports
TBox reasoning, whereas the SWRL-IQ approach only supports querying.

The back end of SWRL-IQ is XSB Prolog, which provides powerful goal-
oriented reasoning. Combined with the flexible support for constraints and lists
(Sections 3.2, 3.3), and our SWRL extensions (Section 3.4), SWRL-IQ enables a
powerful Logic Programming style of specification. The tabling feature of XSB
is used to avoid infinite loops that could otherwise occur in a naive transla-
tion of, for example, equivalent classes and properties. The SWRL built-ins are
implemented directly in Prolog.

The main interface to SWRL-IQ is through a plug-in to Protégé 3. The
reasoner can also be used programmatically, or through a Web Service interface,
although these usage modes are not officially supported at this time. The high-
level architecture is shown in Figure 1.

The OWL-Prolog translator shown in Figure 1 has several parts. It uses an
intermediate representation of the knowledge base (KB), which is modeled on
first-order logic (FOL). The purpose of this is to make the system as flexible as
possible. It allows us to support and combine many different language syntaxes
as long as they fall within first-order logic, by adding additional front ends. It



Java Virtual Machine

Protégé

OWL/SWRL
files

XSB Prolog Environment

Interprolog

Prolog
ontology

representation

Protégé plugin

Protégé
Ontology

representation SWRL-IQ 
Query Tab

XML/CSV
query results

Tracer/Debugger

OWL 
<-> 

Prolog
translator

Fig. 1. Implementation architecture

also allows us to plug in different reasoners, as long as they operate on some
fragment of first-order logic, by writing additional back ends. The FOL repre-
sentation serves as the common nexus of all the different front and back ends.
Going beyond the triple representation also makes it easy to support predicates
with an arbitrary number of arguments (see Section 3.4). The downside of this
architecture is that it is less integrated with the triple model. It is not easy to find
out which triple(s) map to which Prolog rule(s). Incremental updates therefore
become slightly more complicated (but not impossible; SWRL-IQ automatically
reacts to changes in the KB in an incremental way). In addition, working with
several different representations (triples, FOL, Prolog) makes the system more
complex generally, and consumes more memory.

3.1 Interface

The Protégé-based user interface (Figure 2) has three main parts: The query
instance browser, the query editor, and the query results panel. The query in-
stance browser is used to create new query individuals, and to select among
existing ones. The query editor to the right of the query instance browser is
used to edit query content. The query results panel at the bottom of the screen
shows the bindings for all the query variables once the query has been submit-
ted, with one row in the table per solution. Queries with no variables just return
“SUCCEEDED” or “FAILED”. Results can also be saved to XML (we use the
SPARQL XML results format4 for this) and CSV (comma-separated values)
files. The latter can be opened in spreadsheet tools and, for example, used to
generate reports or graphs.

3.2 Arithmetic and Constraints

Many of the built-ins can generate numerical constraints, and are implemented
to do so in a very flexible way, using a Prolog subsystem known as Constraint
Logic Programming (CLP). Constraints are maintained throughout the query
and simplified as much as possible. If any constraints cannot be simplified away,
they are returned in the query result, along with the variable bindings. One
consequence of this is that these built-ins can be used “backwards,” and in

4 www.w3.org/TR/rdf-sparql-XMLres/



Fig. 2. SWRL-IQ Protégé user interface

effect to solve systems of equations. This makes rules that use these built-ins
more declarative and powerful. The constraint mechanism is best understood
through examples (Table 1).

Query Bindings Constraints

swrlb:equal(?x,3) ?x = 3 none

swrlb:notEqual(?x,3) ?x = ?Var0 ?Var0 =\= 3

swrlb:lessThan(?x,3) ∧ ?x = Var0, ?y = ?Var1 ?Var0 < 3.0
swrlb:lessThan(?y,?x) ?Var1 - ?Var0 < 0.0

swrlb:lessThanOrEqual(?x,3) ∧
swrlb:greaterThanOrEqual(?x,3)

?x = 3 none

swrlb:pow(? sq,?x,2) ∧
swrlb:multiply(10,? sq,5)

?x = 1.4142135623730951,
?x = -1.4142135623730951

none

swrlb:pow(? sq,?x,2) ∧
swrlb:multiply(10,? sq,5) ∧
swrlb:greaterThanOrEqual(?x,0)

?x = 1.4142135623730951 none

Table 1. Examples of SWRL queries with the returned bindings and constraints

3.3 Lists

Our implementation of the built-ins for lists has a number of interesting features:

– rdf:Lists can be created on-the-fly in SWRL queries, using the syntax
rdf:List(m1,m2...), where m1,m2... are the list members. The same is
true for SWRL rules in Protégé.



– The list built-ins can be used to generate lists, not just to check properties
or retrieve values of existing lists.

– The reasoner can operate on (and return) partially instantiated lists, e.g., a
list of three elements where the second element is unknown.

– Lists in the variable bindings returned by queries are presented in a different
syntax, using square brackets for brevity (as in Prolog), e.g., [m1,m2..]. If
the tail of the list is unspecified (i.e., the list has unknown size), the Prolog
bar syntax is used, e.g., [m1,m2|?tail].

These features are illustrated in Table 2.

Query Bindings

swrlb:listConcat(?l,rdf:List(1,2),rdf:List(3,4)) ?l = [1,2,3,4]

swrlb:length(2,?l) ∧ swrlb:first(1,?l) ∧
swrlb:rest(?r,?l) ∧ swrlb:first(2,?r)

?l = [1,2]

swrlb:length(2,?l) ∧ swrlb:member(1,?l) ?l = [1,?Var0],
?l = [?Var1,1]

swrlb:first(1,?l) ?l = [1|?Var0]

Table 2. Examples of SWRL queries with lists

The fact that we can generate lists dynamically (unlike OWL individuals,
which can not be generated by SWRL rules) means that we can use them as a
general-purpose data structure. We have used this to implement matrix opera-
tions (e.g., for matrix multiplication) in SWRL, where matrices are represented
as lists of lists. The flexibility of our built-ins (both for lists and for arithmetic)
means that we can, for example, use the rule for adding matrices “backwards”
to subtract matrices. The use of the list constructor rdf:List is an exception
(the only one) to the function-free requirement of Datalog. It is possible to write
rules using these list features that cause the reasoner to not terminate, but this
is usually the result of a modeling error rather than an intended, useful rule.

3.4 SWRL Extensions

Sometimes SWRL itself is not enough. Perhaps the most significant limitation is
that it is limited to unary and binary predicates (except for the fixed set of built-
in predicates). When rules are used in a “programming” style or for complex or
parameterized relationships, this is often not enough. One solution is to encode
multiple arguments into an rdf:List, and then “unpack” the arguments inside
the rule (using swrlb:first and swrlb:rest). However, this quickly becomes
unwieldy, and the list-handling logic hides the real meaning of the rules. Thus,
SWRL-IQ supports user-defined predicates with an arbitrary number of argu-
ments. The way we define such predicates is to simply create new individuals of
the swrl:Builtin class. These pseudo-builtins can then be used in SWRL rules
and queries with any number of arguments. No actual “built-in” implementation
in programmatic code is needed. Although our current approach to this is a bit of



a hack on the syntax level, in our experience n-ary predicates are indispensable
for real-world use cases.

In general, our approach is to define all our predicates in SWRL, if possible.
However, SWRL-IQ also provides a number of new built-in predicates that are
implemented in code, because they go beyond the expressiveness of SWRL itself
(even with n-ary predicates). We describe only some of these extensions here.

The swrlex:ignore predicate is deceptively simple – it takes any number of
arguments and does nothing! This is needed because SWRL requires all variables
that are in the rule head to also occur in the rule body. Sometimes such extra
variables are unavoidable, for example in the “base case” rule of a recursively
defined predicate5.

The swrlex:allKnown predicate is an aggregation function.
swrlex:allKnown(?res,?x,?p,?x1,?x2,...) returns a list ?res containing
all values for ?x such that p(?x1,?x2,...) is satisfied, where ?x is one of
?x1,?x2,.... This is a non-monotonic extension, essentially because it depends
on negation-as-failure (NAF)6. This is emphasized by the predicate’s name: It
returns all the values that are “known” (or can be inferred by the reasoner).
Thus, allKnown provides a local closed-world assumption.

The swrlex:apply predicate gives us some “higher-order” expressiveness.
swrlex:apply(?p,?x1,?x2,...) is satisfied when the atom with the predicate
?p and arguments ?x1,?x2,... is satisfied. This predicate lets us use predicates
as arguments, and have variables that bind to predicates. This gives us a limited
higher-order logic, similarly to lambda functions in functional programming.
This allows us to write more generic rules instead of repeating almost-identical
rules for different cases.

To illustrate how ignore, allKnown and apply might be used, consider a
predicate sort(?sl,?l,?p) that sorts a list of any kind of entities, where ?sl is
the version of the list ?l sorted in ascending order using the ordering predicate
?p. For example, we can sort some numbers using swrlb:lessThanOrEqual as
the ordering predicate:

swrlu:sort(?sl,rdf:List(4,17,3,20),swrlb:lessThanOrEqual)

returns

?x = [3,4,17,20]

We can also sort wines according to their price. Assuming that our wine ontol-
ogy has a hasPrice predicate that links wines to their prices, we can define a
predicate wineCheaperThan using a SWRL rule:

hasPrice(?w1, ?p1) ∧ hasPrice(?w2, ?p2) ∧
swrlb:lessThanOrEqual(?p1, ?p2) ⇒ wineCheaperThan(?w1, ?w2)

Then we can run the query

5 It is possible to get around this requirement in other ways, e.g. using owl:Thing(?x),
but this does not work for data literals, and ignore also has the advantage that it
can “swallow” any number of arguments using only one atom.

6 We have not added a not predicate for direct use of NAF, but it would be possible
to do so.



swrlex:allKnown(?wines,?wine,hasPrice,?wine,?price) ∧
swrlu:sort(?sortedWines,?wines,wineCheaperThan)

which will return a list of wines (that have a price) sorted by price, in the
?sortedWines variable. Note the higher-order style of passing predicates as ar-
guments. We used allKnown to produce a list of all known wines to use as an
input to the sort predicate. The definition of sort depends on ignore and
apply, and is shown in Figure 3. The key point is that we have to create only
one sort predicate, and we can use it to sort anything.

swrlb:empty(?x) ∧
swrlex:ignore(?pred)

⇒ sort(?x, ?x, ?pred)

min list(?m, ?y, ?pred) ∧
swrlb:first(?m, ?x) ∧
makeList(?ml, ?m) ∧
swrlb:listSubtraction(?r, ?y, ?ml) ∧
sort(?sr, ?r, ?pred) ∧
swrlb:rest(?sr, ?x)

⇒ sort(?x, ?y, ?pred)

swrlb:length(1, ?args) ∧
swrlb:first(?x, ?args) ∧
swrlex:ignore(?pred)

⇒ min list(?x, ?args, ?pred)

swrlb:length(?len, ?args) ∧
swrlb:greaterThanOrEqual(?len, 2) ∧
swrlb:first(?frst, ?args) ∧
swrlb:rest(?rest, ?args) ∧
min list(?rmin, ?rest, ?pred) ∧
minimum(?min, ?rmin, ?frst, ?pred)

⇒ min list(?min, ?args, ?pred)

swrlex:apply(?p, ?x, ?y)

⇒ minimum(?x, ?x, ?y, ?p)

swrlex:apply(?p, ?y, ?x)

⇒ minimum(?y, ?x, ?y, ?p)

Fig. 3. SWRL rules for the sort predicate (some auxiliary rules omitted)

Other extensions provide simple but useful utilities. For example, swrlex:pi
returns the constant π, and swrlex:string number allows us to convert be-
tween numbers and their string representations.

3.5 Java Attachments

Like many reasoning systems, SWRL-IQ has a mechanism for calling arbitrary
programming code from within the reasoner. This is traditionally called pro-
cedural attachments. In our implementation, the code to be called has to be
written in Java. We call our mechanism Java Attachments.

Most computations can be performed in SWRL, especially with the exten-
sions described above. However, there are situations where it does not make
sense to use SWRL rules. One such case is when a large and complicated func-
tion has already been implemented in programming code, and perhaps certified.
Re-implementing and re-certifying in SWRL may not be feasible. Indeed, if the
source code is not available and the algorithm is not known, there is no choice
in the matter.



The hook to the Java attachments mechanism is the built-in predicate
callJavaStaticMethod(?ret,?cls,?mthd,?arg1,?arg2,...) where ?ret is the
return value, ?cls is a string representing the class, including the full package
name, ?mthd is a string for the static method to call, and ?arg1,?arg2,... are
the arguments to the method. For example,

swrlex:callJavaStaticMethod(?r,"java.lang.Math","random")

returns

?r = a random number from 0.0 to 1.0

As seen here, any static method of the standard Java library can be used.
However, user-defined or third-party code can also be called as explained, by
simply putting its jar file in the classpath. Note that only basic types can be
used for the arguments (ints, strings, lists, and so on). There is currently no way
to pass RDF resources (individuals, classes, and properties) to Java Attachments.

3.6 Tracing and Debugging

The tracing and debugging features of SWRL-IQ are used for the explanation of
reasoning results. They answer the questions “why?” or “why not?” did a result
happen. The user interface for both is similar.

Tracing is used to explain how and why a query succeeded. It can be used,
for example, to learn why an unexpected result happened, or to check that some
SWRL rules got used in the intended way. The trace window contains a tree
showing one or more proofs of the given query. Figure 4 shows an example trace
that uses some of our rules for virtual terrains to calculate an elevation error.

Fig. 4. Partially expanded trace of a query about virtual terrain elevation error

Each “solution” node shows the depth of its proof, which can sometimes be
interesting. This corresponds to the depth of the tree starting at the solution



node. Each solution node has one or more child nodes, which we call atom nodes
- one atom node for each atom in the query. An atom node consists of an atom
followed by a justification after the vertical bar, and possibly a number of child
atom nodes. The atom nodes are color coded according to the type of the atom
(class, object property, etc.) and its arguments (individual, literal, etc.).

The meaning of an atom node, along with its justification and its child atom
nodes, is that the atom was proved, using the inference rule given in the jus-
tification, and (if applicable) the child atoms, which in turn have their own
justifications, and so on. The trace in Figure 4 uses SWRL rules (rule), sub-
class (subcls) and domain (dom) axioms, asserted facts (assert), and computed
properties (comp, i.e. from SWRL built-ins) as its justifications. The tree struc-
ture directly follows the operational semantics of the Prolog reasoning. Debug
trees show all attempted proofs rather than actual proofs, and add two types of
nodes to the proof trees: FAILED and ABORTED nodes.

The tracer and debugger are both implemented in a straightforward way as
Prolog “meta-interpreters”; they come almost for free with our Prolog-based
approach. The elements of the proof trees are relatively easy to understand, but
the user can get overwhelmed by the size of the proofs. Explanation of inference
results is an area of ongoing research. We consider the existing tracing feature
to be a rudimentary form of explanation, and we plan to do more work in this
area.

3.7 Performance

SWRL-IQ supports reasoning on a fairly expressive language fragment. This
means that scalability is sacrificed to some extent. The type of reasoning goes
beyond what can be achieved with disk-based methods [4], i.e. it is all in-memory
and therefore limited by the amount of memory available. Our own use cases
are fairly small – our largest knowledge base contains about 40,000 triples. One
bottleneck of the system is the time it takes for XSB to build its tables. For our
40,000-triple KB, this is about 10 seconds on a typical PC. However, this has
to be done only once. Further changes to the KB are tabled incrementally and
very quickly. Query answering time on this scale of KB is typically less than one
second. Comparisons with other reasoners is not meaningful due to the vastly
different expressivity of SWRL-IQ compared to most RDF reasoners.

4 Related Work

Semantic Web querying usually means using the SPARQL language. We have
chosen to use SWRL syntax for our queries for several reasons. First, SPARQL is
closely tied to the triple model. As we explained in Section 3, our reasoner does
not operate on the triple level. The SPARQL syntax would not allow for predi-
cates with arbitrary arity, which are critical to the expressiveness of SWRL-IQ.
On the other hand, SPARQL allows for queries about schema (TBox) informa-
tion – e.g., by using rdfs:subclassOf in the predicate position of a triple pat-
tern. SWRL-IQ cannot handle such queries because the schema is implicit in the
Prolog translation and not explicitly represented. Furthermore, it is natural to



use the same language for rules and queries. SWRL rules relate to SWRL queries
in the same way that Prolog rules relate to Prolog queries. More generally, one
might say that SPARQL is a query language for RDF triple models, whereas
SWRL queries operate on a higher semantic level of OWL+SWRL ontologies.

Protégé provides a query language (and interface) called SQWRL [5]. This
requires the Jess reasoning engine7 (which is not free for non-academic users).
This solution differs in many ways from ours: It uses forward chaining instead
of backward chaining, it does not support the SWRL built-ins as flexibly as
SWRL-IQ does, does not return constraints, and so on.

There are many other OWL and RDF reasoning engines. We discussed the
main differences between our approach and other engines in Section 3. Jena8

includes a rule engine9 that combines forward chaining with tabled backward
chaining (like XSB). It is closely tied to the triple model, has its own proprietary
rule language, and does not support arbitrary arities and many other features of
SWRL-IQ. In previous work [6], we developed an OWL+SWRL reasoner based
on narrowing and rewriting logic, which allowed even more expressive handling
of constraints, as well as equality reasoning, but at the price of efficiency.

5 Future Work

With SWRL-IQ, we have a very powerful and flexible query tool for OWL and
SWRL. However, it is still very difficult to create, edit, understand, and validate
SWRL rules and queries, even for ontology experts. Existing rule editors and
visualization tools like GrOWL [7] and Axiomé [8] offer partial solutions, but
fail to scale to the complexity and size of our rule bases. We are concerned with
projects that involve large amounts of detailed information from subject-matter
experts (SMEs). That knowledge has to be encoded in OWL and SWRL. Fur-
thermore, it must be possible to convince the SME that the encoding is correct,
i.e., to validate the formal knowledge. Our goal is to have an integrated system
for all knowledge engineering tasks. In a follow-up project, we are planning to
address some shortcomings of current tools. Features in the scope of this work
include rule testing, provenance, type checking, rule templates, search, natural
language, rule dependency analysis, improved debugging and tracing, rule syntax
improvements, views and perspectives, and rule analysis.

We are also considering supporting Protégé 4 and OWL 2. Due to its flexible
implementation, it would be easy to add support for the OWL 2 constructs that
still fall within the expressiveness of the reasoning engine. However, a significant
drawback of Protégé 4 is that it, at the time of writing, has less support than
Protégé 3 for creating and editing SWRL rules. In addition, the combination
of SWRL with OWL 2 has not been defined (SWRL is an extension to OWL
1). Another possibility is OWL 2 + RIF, but again, there is no existing edit-
ing tool for RIF rules, and RIF also has the disadvantage of being less tightly
integrated with OWL, although the combined OWL 2 + RIF semantics have

7 http://www.jessrules.com
8 http://incubator.apache.org/jena
9 http://incubator.apache.org/jena/documentation/inference/



been specified10 and an RDF embedding of RIF is in the works11. In any case,
these language changes would not fundamentally change the reasoning power of
SWRL-IQ, only the pragmatics of syntax and tools.

Acknowledgments
The work described in this paper was carried out at the SRI International facil-
ities in Menlo Park, California, and was funded in part by the U.S. Department
of Defense, TRMC (Test Resource Management Center) T&E/S&T (Test and
Evaluation/Science and Technology) Program under NST Test Technology Area
prime contract N68936-07-C-0013. The authors are grateful for this support and
sthank Gil Torres, NAVAIR, for his leadership of the Netcentric System Test
(NST) technology area, to which the ANSC project belongs. We also acknowl-
edge ODUSD/R/RTPP (Training Transformation) for its sponsorship of the
associated ONISTT project. Reg Ford and Susanne Riehemann collaborated on
SWRL-IQ. Finally, David Warren and Terrance Swift provided expert guidance
and bug fixes for XSB Prolog, and Miguel Calejo did the same for InterProlog.

References
1. Elenius, D., Martin, D., Ford, R., Denker, G.: Reasoning about Resources and

Hierarchical Tasks Using OWL and SWRL. In A. Bernstein et al., ed.: 8th Interna-
tional Semantic Web Conference, ISWC 2009. Lecture Notes in Computer Science,
Springer (2009) 795–810

2. Riehemann, S., Elenius, D.: Ontological Analysis of Terrain Data. In Liao, L., ed.:
COM.Geo. ACM International Conference Proceeding Series, ACM (2011)

3. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Com-
bining Logic Programs with Description Logic. In: Proc. 2nd International Semantic
Web Conference (ISWC2003). (2003)

4. Yahya, M., Theobald, M.: D2R2: Disk-Oriented Deductive Reasoning in a RISC-
Style RDF Engine. In Olken, F., Palmirani, M., Sottara, D., eds.: RuleML America.
Volume 7018 of Lecture Notes in Computer Science. (2011) 81–96

5. O’Connor, M.J., Das, A.K.: SQWRL: A Query Language for OWL. In Hoekstra, R.,
Patel-Schneider, P.F., eds.: Proc. 5th International Workshop on OWL: Experiences
and Directions (OWLED 2009). CEUR Workshop Proceedings (2009)

6. Elenius, D., Denker, G., Stehr, M.O.: A semantic web reasoner for rules, equations
and constraints. In Calvanese, D., Lausen, G., eds.: RR. Volume 5341 of Lecture
Notes in Computer Science., Springer (2008) 135–149

7. Krivov, S., Williams, R., Villa, F.: GrOWL: A Tool for Visualization and Editing
of OWL Ontologies. Web Semantics 5 (2007) 54–57

8. Hassanpour, S., O’Connor, M.J., Das, A.K.: Axiomé: A Tool for the Elicitation and
Management of SWRL Rules. In Hoekstra, R., Patel-Schneider, P.F., eds.: Proc.
5th International Workshop on OWL: Experiences and Directions (OWLED 2009).
CEUR Workshop Proceedings (2009)

10 http://www.w3.org/TR/rif-rdf-owl/
11 http://www.w3.org/TR/rif-in-rdf/


