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Abstract. Ontology Based Data Access (OBDA) has drawn considerable atten-
tion from the OWL and RDF communities. In OBDA, instance data is accessed by
means of mappings, which state the relationship between the data in a data source
(e.g., an RDBMSs) and the vocabulary of an ontology. In this paper we present
Quest, a new system for OBDA focused on fast and efficient reasoning with large
ontologies and large volumes of data. Quest provides SPARQL query answering
with OWL 2 QL/RDFS entailments and can function as a traditional OWL rea-
soner/triple store, or as a mediator, located on-top of a legacy data source linked
to the ontology by means of mappings. In such configuration all data remains in
the data source and is only accessed at run-time. Quest uses query rewriting tech-
niques as the inference mechanism in both modes. In this paper we describe the
architecture of Quest, and the optimization techniques it currently implements.

1 Introduction

Nowadays, the use of OWL and RDFS ontologies is widespread. One common use case
for this technology is the exploitation of the vocabulary and semantics of ontologies
during query answering over data extracted from existing legacy sources. The ontology
vocabulary allows us to integrate the data from heterogenous sources into a coherent,
global view. At the same time, the terminological part of an ontology (the TBox) allows
for obtaining richer answers by means of OWL and RDFS inference. This scenario is
called Ontology Based Data Access (OBDA).

The purpose of the current paper is to introduce Quest, a new system for OBDA
whose key service is SPARQL query answering under the OWL 2 QL or RDFS entail-
ment regimes. The development of Quest focuses on efficiency in the presence of very
large volumes of data and very large ontologies. To achieve this, Quest uses highly op-
timized query rewriting techniques and relies on RDBMSs for ABox storage and query
execution. Moreover, the SQL queries generated by Quest are tuned with respect to the
capabilities of SQL engines to allow to exploit their optimizations during query evalua-
tion. The rest of the paper is organized as follows: In Section 2, we introduce the notion
of OBDA models and mappings, which are central to Quest. In Section 3, we provide
a description of the query answering process in Quest as well as the optimizations it
implements. In Section 4, we discuss Quest in the context of related systems. We con-
clude in Section 5 with future directions for the system. Quest is part of the -ontop-
framework for OBDA. Further information about Quest and -ontop- can be found in
the project’s homepage [9]. This paper is a short overview of the system, for a full
description of all techniques mentioned here we refer to a technical report [11].



2 OBDA models in Quest

A key aspect of OBDA is that data is obtained from one or more legacy systems, e.g.,
RDBMSs, XML systems, etc. To use this data in a Semantic Web application a user
needs to perform an ETL process, i.e., (E)xtract the data from the sources, (T)ransform
it into an OWL ABox (or as RDF triples), and (L)oad it into a query answering system
(i.e., a reasoner or triple store). This practice has several drawbacks. First, it puts the
burden of ETL on the client’s application code, which increases software complexity of
the application, and hence, the cost of development and maintenance. In addition, this
generates duplicated data that consumes resources and introduces the problem that, in
the event of an update on the data source(s), the system becomes out of synch. But more
importantly, the fact that the query answering system is aware neither of the provenance
of the data, nor of the way in which the data was extracted from the sources is an im-
portant missed opportunity for optimization during inference and/or query answering.

Example 1. Let T be an OWL TBox composed of the following 6 axioms:

SubClassOf(CoronaryPatient, CardiacArrestPatient), domain(age, Patient),
SubClassOf(CardiacArrestPatient, Patient), domain(id, Patient),
SubClassOf(CardiacArrest, HearthCondition), domain(name, Patient),
SubClassOf(CardiacArrestPatient,

ObjectSomeValuesFrom(affectedBy, CardiacArrest))

and let our data source be a relational DB composed of two tables, patient and condition,
organized as follows:

patient =
id (PK) name age

’x22’ ’John’ 56
condition =

id (PK) cond

’x22’ 22

such that id is a primary key over the patient table and, intuitively, the first 2 columns
allow us to generate data for the Patient class and the data properties id, name and
age; moreover, we know that for any row in the condition table, if cond = 22 then the
corresponding id identifies a patient that had a cardiac arrest. If a system constructs an
ABox using this specification, it might produce 5 ABox assertions, e.g., Patient(x22),
id(x22, ′x22′), name(x22, ′John′), age(x22, 56), and CardiacArrestPatient(x22).

More importantly, it is not possible to infer new ground assertions from this data and
the TBox of the system, since all possible ground inferences are already explicit in the
ABox. However, if we load these TBox and ABox into an inference engine, the system
will inevitably generate redundant inferences, e.g., due to the domain(name, Patient)

axiom, a system based on forward chaining would at least attempt to generate one
assertion of the form Patient(x22) for each assertion of the form name(x22, ′John′). An
optimized system would discard the redundant data, however, the inference would have
been already done.

These redundant inferences, have a very high cost when the TBoxes and/or data are
large, hindering dramatically the performance of inference at load time, or during query
answering. More importantly, if the system has access to the source and information
about the data extraction procedure, it would be possible to avoid redundancy.



Quest addresses the aforementioned issue by considering the formalization of the
relationship between source and ontology as a first-class citizen in the system’s life-
time. We call this formalization an OBDA model. The OBDA model is composed of a
data source definition and a set of mapping axioms. The former provides the informa-
tion that a system requires to access the data source, and the latter provides a formal
specification of the relationship between the data in the data source and the vocabulary
of an OWL 2 QL/RDFS ontology. Following [7], a mapping axiom in Quest is defined
as a pair of an SQL query and an ABox assertion template. An assertion template is a
set of RDF triples written in a turtle-like syntax in which the subject and object of the
triples allow for variables that reference SQL columns of the result of the SQL query of
the mapping, and for (Skolem) functions applied to them. Intuitively, a mapping axiom
defines how the values in each row of the result of an SQL query can be used to generate
a set of ABox assertions.

Example 2. Let the TBox and database be those of Example 1. Then the formalization
of this scenario in a Quest OBDA model can be done using the following 2 mappings:

SELECT id, name, age FROM patient;
{<":patient/{$id}"> rdf:type :Patient;

:id $id; :name $name; :age $ageˆˆxsd:int}
SELECT id FROM condition WHERE cond = 22;
{<":patient/{$id}"> rdf:type :CardiacArrestPatient.}

Note that by analyzing these mappings, and assuming that there is a foreign key con-
straint from the id attribute of the condition table to the same attribute in the patient
table, a system can detect the containment relationship between the ids returned by
the second SQL query and those returned by the first one, and optimize the reasoning
process accordingly, e.g., avoiding the redundancy issues mentioned before.

Important features of the mapping language of Quest include: (i) typing of OWL
data values, (ii) language tags for literal terms, (iii) support for URI’s and literal con-
stants in the templates, and (iv) functions to construct URI’s, BNodes, and OWL data
values from the SQL values returned by the SQL queries. At the moment, mappings
can be created manually by using Quest’s API, by writing a .obda file in Quest’s own
syntax, or by using -ontopPro- [9], a plugin for Protege 4 that offers many features
to facilitate the creation of mappings. In the near future we will also add support for
automated mapping generation, as well as support for compatible languages that have
different syntaxes, e.g., R2RML and D2RQ.

3 Query answering in Quest

The main service in Quest is SPARQL query answering. The current version of Quest
(v1.7-alpha) supports the conjunctive fragment of SPARQL plus FILTER expressions.
Support for UNION, OPTIONAL, and more advanced operators will be added in later
versions. A distinguishing feature of Quest are the so called ABox modes, i.e., config-
urations that define how data assertions are given to the system (see Fig. 1). During
system initialization, Quest will request a TBox that defines the vocabulary as well as
the semantics of the system, then, assertional data is given as follows:



Virtual ABox mode. In this mode data assertions are defined as an OBDA model
consisting of a single JDBC data source definition D and a setM of mappings for that
source. In this mode Quest works in a purely on-the-fly manner, relying solely on SQL
query rewriting to produce answers for the user’s queries. Note that this allows Quest to
always be up-to-date w.r.t. to the data source. Moreover, Quest allows the source to be
a data federation system, e.g., Teiid, DB2 data federator, etc., for on-the-fly integration
of multiple sources by means of a single ontology.

Classic ABox mode. In this mode Quest works similarly to a traditional OWL rea-
soner or triple store, in the sense that it will require as input ABox assertions (i.e.,
data triples). The interesting aspect of this mode is that Quest uses the same mech-
anism for query answering as the one used in virtual mode. That is, Quest will also
use an OBDA model and a RDBMS during query answering; however, in this case the
database (schema and data) and the mappings of the OBDA model are defined and man-
aged by Quest itself. The client may choose to let Quest make use of H2, an in-memory
database, for this purpose, or may provide Quest with the connection information to
access an existing supported RDBMS (e.g., MySQL, PostgreSQL, DB2, or Oracle).

3.1 Quest initialization

Quest’s initialization mechanism consists of several steps in which the input TBox and
mappings get analyzed and optimized so as to allow the rewriting and unfolding algo-
rithms to be fast, and the SQL queries produced to be minimal and efficient. We will
now briefly describe each of these steps. Note that some steps are done exclusively in
classic ABox mode and some exclusively in virtual ABox mode.
(i) Vocabulary optimization. The first optimization performed by Quest is over the
input TBox T . In this stage it will transform T into a TBox T e in which the vo-
cabulary has been simplified by detecting semantic equivalence of named classes and
named properties. From each equivalence set, Quest will eliminate from T e all but
one class/property (the ’canonical form’). In addition to T e, this step also produces an
equivalence map, where a record of the removed vocabulary, together with the corre-
sponding canonical forms, is kept in order to process queries and/or ABox assertions.
Given the extensive use of synonyms for classes, properties, and inverse properties in
OWL ontologies, this optimization, though conceptually simple, has a strong impact on
the efficiency of the system, including the size of query rewritings. See [10] for details.
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Fig. 1. Quest initialization and configuration based on the ABox mode



(ii) RDBMS and OBDA model definition (classic ABox mode). The technique used
in this step is called Semantic Index repository [10]. The technique parts from the well
known notion of universal tables, that is often used in triple stores, i.e., subject, prop-
erty, object tables. Quest uses one table for each type of assertions, i.e., class, object,
and data property assertions (in the last case one for each value domain). In these ta-
bles, the class or property is determined by a numeric id (idx). The assignment of ids to
classes and properties is done taking into account the TBox T such that the value of the
identifiers encode the implied hierarchical information of T . For example, if the class
Mammal is the top class of a tree hierarchy consisting of 1000 classes, our technique
makes sure that Mammal has id 1 and all implied subclasses have ids from 2 to 1000.
During processing of ABox assertions, each row will be inserted using those ids, such
that the system will be able to create mappings that retrieve all implied ABox assertions
by means of intervals in the WHERE clauses, e.g., to retrieve all instances of Mammal:

SELECT subject FROM classtriples WHERE id >= 1 AND id <= 1000;
{?subject rdf:type :Mammal;}

Note that this technique makes most of the TBox inferences redundant, since the map-
pings and database already capture the TBox semantics.

(iii) T -Mappings (virtual ABox). This optimization focuses on the enforcement of
TBox semantics on the OBDA model used for unfolding and SQL query generation.
During this step Quest will create additional mappings to account for the semantics of
the TBox. That is, if T |= A v B, this step will ensure that the data obtained from the
mappings for A is also used in mappings for B. This allows Quest to cope with most
entailments related to constants, including subClassOf, subPropertyOf, domain, range,
and inverseOf. For example, if the TBox and mappings where those of Examples 1
and 2, this optimization would generate at least the following additional mapping:

SELECT id FROM condition WHERE cond = 22;
{<":patient/{$id}"> rdf:type :Patient.}

This technique, called T -Mappings [8], makes most reasoning w.r.t. T redundant, sim-
ilarly to the Semantic Index technique in classic ABox mode.

(iv) Mapping program optimization. In this step, Quest transforms the resulting OBDA
model into a Datalog program, called the mapping program, that has the same seman-
tics, but that is easier to manipulate. To do this, it translates each mapping axiom into
a Datalog rule, where the head of the rule corresponds to the target template, and the
body of the rule to the SQL query of the mapping. Function symbols are used to account
for URI templates, datatype casting and similar operations. For example, the previous
mapping is transformed into the following mapping rule:

Patient(template(":patient/{}", x))← condition(x, y), y = 22

Note the use of the function template , which abstracts away the meaning of URI tem-
plates. Also note that to create the body of this rule it is necessary to obtain metadata
about the schema of the database, and to parse the SQL query in the mapping. More-
over, each rule must have only one atom in the head, hence, this step requires to split



mappings that contain multiple triple patterns in the target template into simple map-
pings, with only one pattern. Once the mapping program is setup, Quest optimizes it
by removing any rules that are redundant with respect to query containment. At this
stage, in virtual ABox mode, Quest also uses information about primary keys and other
constraints obtained from a DB metadata analysis step.

(v) TBox redundancy elimination. This optimization exploits information about com-
pleteness of the OBDA model of the system. Intuitively, Quest detects which inferences
are already taken into account by the OBDA model and produces a new TBox in which
only non-redundant inferences are entailed. The combination of this optimization with
the T -Mappings technique in virtual ABox mode, or the Semantic Index technique in
classic ABox mode allows Quest to dramatically simplify the TBox used for rewriting.

(vi) Component setup. Last, having set up/optimized the internal TBox and OBDA
model, Quest will initialize the rewriting, unfolding and SQL execution engines and is
ready for query answering.

3.2 Quest run-time

Query answering in Quest is done by means of query rewriting into SQL. Given an
input query Q, three steps are performed at query answering time: (i) query rewriting,
where Q is transformed into a new query Q′ that takes into account the semantics of
the TBox; (ii) query unfolding, where Q′ is transformed into a single SQL query using
the mappings of the OBDA model; and (iii) query evaluation, where the SQL query is
executed over the data storage and the results are streamed to the client.

We provide now an intuitive description of the first two query execution steps. For
the third one, we rely on standard relational technology.

(i) Query rewriting. [3] Intuitively, query rewriting uses the TBox axioms to compute
a set of queries that encode the semantics of the TBox, such that if we evaluate the
union of these queries over the ABox we will obtain sound and complete answers. The
query rewriting process works using the TBox axioms and unification to generate more
specific queries from the original, most general query. In Quest, this process is iterative,
and stops when no more queries can be generated.

Example 3. Let the TBox be as in Example 1, and let Q be the following SPARQL
query that asks for the URI, name, and age of all patients with a hearth condition and
age between 21 and 70:

SELECT ?p ?n ?a WHERE {
?p a Patient; name ?n; age ?a; affectedBy [a HeartCondition].

FILTER (?a >= 21 & ?a <= 70) }

From this query, making use of the SubClassOf axioms, the query rewriting algorithm
of Quest generates the following rewriting:

SELECT ?p ?n ?a WHERE {
{?p a Patient; name ?n; age ?a; affectedBy [a HeartCondition]} UNION
{?p a Patient; name ?n; age ?a; affectedBy [a CardiacArrest]} UNION
{?p a Patient; name ?n; age ?a; a CardiacArrestPatient} UNION ...

FILTER (?a >= 2 & ?a <= 70) }



Due to space limitations we cannot provide more details here. However, we note that
the query rewriting algorithm is a variation of the PerfectRef algorithm [3] optimized
in order to obtain a fast query rewriting procedure that generates a minimal amount
of queries. In particular, it has been restructured to anticipate termination w.r.t. satura-
tion and avoid useless unification of atoms, and has been extended with extensive use
of query containment w.r.t. dependencies to minimize the size of the rewriting. Also
note that the techniques introduced before (Semantic Index, T -mappings, and TBox
optimizations) have reduced the size of the TBox, and most queries produced by rewrit-
ing can also be eliminated by means of containment checks. In many cases, e.g., for
grounded queries, the rewriting stage in Quest will generate just a few queries.
(ii) Query unfolding. Intuitively, query unfolding uses the mapping program (see Sec-
tion 3.1.(iv)) to transform the rewritten query into SQL. First, Quest transforms the
rewritten query into a Datalog program, by translating each subquery into a Datalog
rule such that each graph pattern becomes a Datalog atom (rdf:type patterns be-
come unary atoms, other patterns become binary atoms, FILTER expressions become
(in-)equality atoms and the SELECT expression becomes the head of the rule). Then,
the program is resolved [5] against the mapping program, until no resolution step can be
applied. At each resolution step, Quest replaces an atom formulated in terms of TBox
predicates, with the body of a mapping rule. In case there is no matching rule for an
atom, that sub-query is logically empty and is eliminated. Finally, when no more resolu-
tion steps are possible, we have a new Datalog program, formulated in terms of database
tables, that can be directly translated into a union of select-project-join SQL queries.
Also at this step, Quest makes use of query containment w.r.t. dependencies to detect
redundant queries and to eliminate redundant join operations in individual queries (i.e.,
using primary key metadata). Last, Quest always attempts to generate simple queries,
with no sub-queries or structurally complex SQL. This is necessary to ensure that most
RDBMS engines are able to generate efficient execution plans.

To complement the description of the unfolding procedure, we now provide an ex-
ample of the SQL queries generated by Quest in virtual mode.

Example 4. Consider the query rewriting generated in Example 3 and the OBDA model
from Example 1. Note that from the 3 subqueries in the rewritten query, only the last one
can be non-empty, since the graph patterns involving the property affectedBy cannot
be matched with any mapping in the OBDA model. Moreover, given that the column id
is a primary key in the table patient, the first three simple graph patterns in this query
can be satisfied using a single reference to the patient table. Then we have that Quest
unfolds the rewritten query into the following SQL query:

SELECT ’&base;/patient/’ || v1.id as p, v1.name as name,
v1.age as age

FROM patient v1 JOIN condition v2 ON v1.id = v2.id
WHERE v2.cond = 22 AND v1.age >= 21 AND v1.age <= 70

Note that this query already returns URI’s as specified by the mappings, and that the
conditions of the query are formulated over the original columns of the tables. This
allows the RDBMS to exploit any index that may be available, and to obtain an efficient
query execution plan.



4 Related work

With respect to support for on-the-fly query answering over relational sources, systems
like Virtuoso and Mastro-i [2] are pioneers in the area. In comparison to Virtuoso, Quest
reduces query answering to SQL query evaluation, generating a single SQL query that
covers the data access and the reasoning process, while Virtuoso handles reasoning by
means of iterative access to the data source, performing join and other operations on
its own. This difference puts Quest closer to systems like Mastro-i than to Virtuoso. At
the same time, Mastro-i and Quest are different in the adopted optimizations as well
as in the support for OWL-oriented OBDA models. Also, Quest makes extensive use
of TBox and mapping transformations, database metadata and query containment w.r.t.
dependencies that, to the best of our knowledge, are not available in Mastro-i.

In the context of query rewriting systems we mention Requiem [6], QuOnto [1],
Presto [12], and Owlgres [13]. These systems are comparable to Quest in that they rely
on query rewriting w.r.t. to the TBox for query answering. At the same time, all systems
differ from Quest in their user of the database layer, since none of these systems use the
database for reasoning. In contrast, Quest embeds most of the TBox semantics into the
database by means of the Semantic Index technique. This key difference allows Quest
to produce smaller queries than all these systems, since it encodes inferences in succinct
numeric intervals, instead of individual queries or Datalog rules. Our experiments have
shown that in TBoxes with large hierarchies, Quest generates SQL queries that are
orders of magnitude smaller than those produced by Owlgres, Quonto, or Requiem and
significantly smaller than those of Presto (see [10] for details). At the same time, the
UCQ-based rewriting technique implemented in Quest is by nature, slower than that
of Presto (CNF vs. DNF). We believe that the ideal system should combine Quest’s
techniques with a succinct rewriting technique such as Presto’s or the one in [4].

Last, also triple stores like Jena and Sesame provide similar functionality to Quest
in classic ABox mode. These systems are fundamentally different in that their inference
engines are based on forward-chaining, a rule-based inference technique that material-
izes ground inferences at load time. Initial experiments (see [10]) with Sesame 2.6 have
shown that with large TBoxes (thousands of axioms) and large datasets (millions of
triples), Quest can provide better performance than Sesame at load time (up to 50 times
faster) and comparable performance at query answering time. At the same time, these
engines support full SPARQL while, at the moment, Quest supports only fragments.

5 Conclusions

In this paper we have introduced Quest, a new query answering system with support
for SPARQL query answering under the OWL 2 QL and RDFS entailment regimes.
We have also described some of the more relevant aspects of the system w.r.t. OBDA,
as well as some of the optimizations that it implements. The current system supports
only the conjunctive query fragment of SPARQL 1.0 with FILTERs, and future work
includes the extension of the query answering technique to allow for broader fragments
of SPARQL 1.1. We will also look into the issue of extending the rewriting techniques
implemented in Quest to support different OWL 2 fragments, e.g., OWL 2 EL and
OWL 2 RL possibly in combination with fragments of SWRL.
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