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Abstract. Ontologies have the nasty habit of growing in size and ex-
pressivity until all reasoners are at a loss to treat them in reasonable
time. While it is widely known that the worst case complexity for OWL
2 DL reasoning is double exponential in time, but in fact most ontolo-
gies tend to be well behaved in practice, it is less well known that any
ontology, left to itself, will grow until the worst OWL constructs gang
up together and stop any reasoner from providing answers fast.
We present a brand new idea to tackle this issue, by using a metareasoner
which leverages best of breed reasoners and modularisation techniques
to prevent the worst side effects of growing ontologies and keep query
answering performance to its best.
In our approach, each query will be answered by using only part of
the ontology, and the best reasoner for the query will be selected on
the basis of the features of this ontology portion, which is built using
modularisation and/or atomic decomposition.
We show the performances of an implementation of this approach. Our
Chainsaw metareasoner is not designed to deal with small and inex-
pressive ontologies, for which a regular reasoner is more than adequate.
It, instead, deals with large, complex and unwieldy ontologies, for which
better solutions are not (yet) available.

1 Introduction

As it is well known to ontology engineers, ontologies become harder to manage,
in terms of understanding them and reasoning with them, in a way which is,
unfortunately, not proportional to the increase of their size. It is often the case
that a small number of changes makes an ontology much harder for a reasoner
to process. However, keeping ontologies small and simple is not always possible,
because they might fail to satisfy the application requirements. On the other
hand, it is possible for a small ontology to be hard to reason about.

How to best divide an ontology into smaller portions according to the needs
of the task at hand is still an open problem; the rule of thumb that many
approaches follow is that, when in doubt, one should try to keep the ontology
as small as possible.



This is the main intuitive reason for modularization, i.e., a set of techniques
for splitting ontologies into fragments without loss of entailments for a given set
of terms. To date, however, not many tools provide either user support for these
techniques, nor leverage them for reasoning tasks.

Chainsaw, our metareasoner implementation prototype, exploits the idea in
the following way. For every inference query it creates a module of the ontology
that is then used to answer the query. The module is created in a way that
guarantees the result of the query should be the same as for the whole ontology,
i.e., there is no loss of entailments.

Chainsaw is designed as a wrapper for other reasoners. It uses reasoner
factories to build reasoners on modules of its root ontology, and will integrate
the ability to choose the reasoner best suited to each reasoning task on the basis
of the module characteristics, such as size and/or expressivity. The most obvious
characteristic is an OWL 2 profile of the module. E.g., if the profile is OWL 2
EL then some efficient EL reasoner, like ELK [4], could be used to achieve the
best performance.

The advantages of using modules instead of whole ontologies inside a reasoner
reside in the simplification of reasoning. The complexity of reasoning in OWL 2
DL is N2EXPTIME-hard on the size of the input, therefore being able to divide
the ontology is likely to produce performance improvements orders of magnitude
larger than the relative reduction in size.

Moreover, using modules inside the reasoner can help the knowledge engineer
to concentrate on modelling the knowledge instead of worrying about the lan-
guage pitfalls, since the extra complexity can be tackled in a transparent way.
This, however, does not mean that complexity is no longer an issue. Modulari-
sation is not a silver bullet for reasoning, as in some cases the module needed to
answer a query might still include most of the ontology.

Another advantage of Chainsaw architecture is that it is able to use different
OWL reasoners for each query and module; this allows for choosing the reasoner
best suited for the OWL 2 profile of a specific module. In those cases where it
is not clear which reasoner is best, it is possible to start more than one reasoner
and simply wait for the first one to finish the task - this might require more
resources, but statistical records can be kept to improve future choices. This
functionality, however, is not yet implemented.

The reverse of the medal is that, for simple ontologies, Chainsaw is likely
to be slower than most of the reasoners it uses; this derives from the overhead
needed to manage multiple reasoners and modularization of the ontology itself.
Our objective, in this paper, is to illustrate an approach that can squeeze some
answers out of ontologies that are too troublesome for a single traditional rea-
soner to handle.

In Section 2, we describe briefly the theory behind Atomic Decomposition
and Modularization, which are the building blocks of this approach; in Section 3
we describe the implementation details, trade-offs and strategies adopted, and in
Section 4 we present some preliminary results on the effectiveness of Chainsaw.



2 Atomic Decomposition and Modularization

We assume that the reader is familiar with the notion of OWL 2 axiom, ontology
and entailments. An entity is a named element of the signature of an ontology.
For an axiom α we denote α̃ a signature of that axiom, i.e. a set of all entities
in α. The same notation is also used for the set of axioms.

Definition 1 (Query). Let O be an ontology. An axiom α is called an entail-
ment in O if O |= α. A check whether an axiom α is an entailment in O is an
entailment query. A subclass (superclass, sameclass) query for a class C in an

ontology O is to determine a set of classes D ∈ Õ such that O |= C v D (resp.
O |= D v C,O |= C = D). A hierarchical query is either subclass, superclass,
or sameclass query.

Definition 2 (Module). Let O be an ontology and Σ be a signature. A subset
M of the ontology is called module of O w.r.t. Σ if for every axiom α such that
α̃ ⊆ Σ, M |= α ⇐⇒ O |= α.

One way to build modules is through the use of axiom locality. An axiom
is called (⊥-) local w.r.t. a signature Σ if replacing all entities not in Σ with
⊥ makes the axiom a tautology. This syntactic approximation of locality was
proposed in [1] and provides a basis for most of the modern modularity algo-
rithms [3].

This modularisation algorithm is used to create an atomic decomposition of
an ontology, which can then be viewed as a compact representation of all the
modules in it [7].

Definition 3 (Atomic Decomposition). A set of axioms A is an atom of the
ontology O, if for every module M of O, either A ⊆M or A∩M = ∅. An atom
A is dependent on B (written B 4 A) if for every module M if A ⊆ M then
B ⊆ M . An Atomic Decomposition of an ontology O is a graph G = 〈S,4〉,
where S is the set of all atoms of O.

The dependency closure of an atom, computed by following its dependencies,
constitutes a module; this module can then be used to answer queries about the
terms contained in this closure.

However, for a hierarchical query the signature would contain a single entity,
but the answer set would contain entities that might not be in the module built
for that signature.

In order to address this problem, we use Labelled Atomic Decomposition
(LAD), as described in [6].

Definition 4 (Labelled Atomic Decomposition). A Labelled Atomic De-
composition is a tuple LAD = 〈S,4, L〉, where G = 〈S,4〉 is an atomic de-
composition and L is a labelling function that maps S into a set of labels. A
top-level labelling maps an atom A to a (possibly empty) subset of its signature

L(A) = Ã \ (
⋃

B4A L(B)).



Proposition 1. Let LAD = 〈S,4, L〉 be a top-level labelled atomic decompo-

sition of an ontology O. Then for all named classes x, y from Õ the following
holds:

1. If O |= x v y, then ∃A,B ∈ S : x ∈ L(A), y ∈ L(B) and B 4 A;
2. If O |= x

.
= y, then ∃A ∈ S : x ∈ L(A) and y ∈ L(A).

Proof. 1) From [3], Proposition 11, O |= x v y iff for the module M of O w.r.t.
signature {x} holds M |= x v y. Assume O |= x v y. Then M is non-empty

and x ∈ M̃ . Thus there is an atom A ∈ S such that x ∈ L(A). Due to the
atomic decomposition properties, the union of an atom together with all the
dependent atoms forms a module. So let MA =

⋃
B4AB be such a module. This

module also has x in its signature, so M ⊆ MA. But by the definition of the
top-level labelling MA is the smallest module that contains x in the signature;
so M = MA. This also means that there is only one atom which label contains x.
Now, using the results from [3], we can conclude that y ∈ M̃A; that means, that
one of the atoms B ∈MA is labelled with y. But all such atoms are dependencies
of A, i.e. B 4 A.

2) Assume O |= x
.
= y, which is equivalent to O |= x v y and O |= x v

y. From Case 1) this means that there are atoms A,A′, B,B′ such that x ∈
L(A), x ∈ L(A′), y ∈ L(B), y ∈ L(B′) and B′ 4 A,A′ 4 B. As shown in Case 1),
there is only one atom that contains x (resp. y) in its label, so A = A′, B = B′

and B 4 A,A 4 B. The latter is possible only in case A = B. ut

This proposition provides a way to separate parts of the ontologies necessary
to answer hierarchical queries about named classes. Indeed, it is enough to label
the atomic decomposition with a top-level labelling and the modules for finding
a subsumption relation could easily be found. This approach is orthogonal to
a modularity-based one: while the latter deals easily with the entailment-like
queries, the former provides a way to describe an ontology subset suitable to
answer hierarchical queries.

3 Implementation of Chainsaw

The essence of Chainsaw is mirrored in the paper’s title. Unlike other reasoners,
which usually do the classification of the ontology before any query is asked,
Chainsaw deals with requests in a lazy way, leaving classification to the delegate
reasoners, which are usually at work on a small subset of the ontology.

For each query received, Chainsaw tries to keep the subset of the ontology
needed to answer as small as possible without sacrificing completeness. This is
achieved using different strategies according to the query; i.e., it is not possible
to reduce the size of the ontology when checking for its consistency; however,
other queries, as detailed in Section 2, can be answered by using modules built
via LAD or locality based modules. More in detail, querying about superclasses
of a term will only need the dependency closures of the top-level atoms for that
term for the answers to be computed; the opposite is true for subclass requests.



During preprocessing of the ontology, a LAD of that ontology is built, us-
ing the Atomic Decomposition algorithm available in FaCT++ [5], and both
dependency closure and its reverse are cached for every class name. For every
query the module is constructed: via modularisation algorithm for entailment
queries and via LAD for hierarchical queries. Then a suitable reasoner is created
for that module, and the query is delegated to it. The answer then is returned
to a user.

A naive strategy for answering any query would consist of:

– Build a module M for the query
– Start a new reasoner R on M
– Answer the original query using R

However, it is easy to find possible optimizations to this strategy.
First, this approach creates a new reasoner for each query; if two queries with

the same signature are asked, two (identical) modules would be built and two
reasoners would be initialized, while just keeping the same reasoner would be
enough.

Moreover, while the number of possible signatures for a query is exponential
in the size of the ontology signature (not counting possible fresh entities used
in the query), the number of distinct modules that can be computed against a
given ontology with these signatures is much smaller [2]. This means that, given
a module, there is a good chance that it can be reused for answering queries
with a slightly different signature; therefore, the same reasoner can be used to
answer more than one specific query.

Therefore, a trade-off exists between reducing the size of the module to be
reasoned upon, the complexity of determining such a module and the cost of
starting a new reasoner for each query; to this, one must add the memory re-
quirements of keeping a large module and reasoner cache.

Our approach in Chainsaw is to use a cache for modules and a cache for
reasoners, both limited in the number of cached elements, and ordered as LRU
caches; this has shown to perform rather well in some of our tests, reported in
Section 4.1, where around one hundred thousand entailment checks against a
large ontology have been satisfied using approximately 100 simultaneous reason-
ers, some of which were reused up to 20 times before being discarded. Similar
results have been obtained when caching the modules to avoid rebuilding the
same module for the same signature.

3.1 Future Improvements

There is one more optimization that was not implemented: if a module is included
in another module, the larger module can be used in place of the smaller one.
However, this presents a slippery slope problem: at what level do we stop using
the next containing module, since we do not have an easy way to predict where
this series of modules will become really hard to reason with?

Determining the containment is also an expensive operation; for simple mod-
ules, this operation might cost more than the actual reasoning required. The



sweet spot for this optimization is a situation in which many fairly complex
modules share a large number of axioms and are used often, and their union
does not produce a module which pushes the reasoner’s envelope. Using the
union would provide for a good boost in performance and save memory as well,
but at the time of writing we do not have an effective way of finding such spots.

It seems that atomic decomposition could provide relevant information for
this task; an educated guess would be that such sweet spots reside near the parts
of the dependency graph where a number of edges converge, but, to the best of
our knowledge, there is no strong evidence in favor of this correlation. Future
work might well explore this area.

Another improvement is to add a strategy to choose the best suited reasoner
for a given module; such a strategy would have to take into account the known
weak spots and strong points of each reasoner, as well as the characteristics of
the module and of the query, such as size and OWL profile, or whether the
query requires classification of the module or not. Where this is not sufficient,
statistical records could be kept in order to create evidence based preferences
and improve the strategy over time.

3.2 Integration in Existing Toolchains

Chainsaw implements the OWLReasoner interface defined in the OWL API1;
it is therefore easy to add it to existing applications, such as ontology editors,
which already use some of the existing implementations of OWLReasoner.

4 Empirical Evaluation

To check the performance of Chainsaw we ran several tests with it. For the
tests we used a MacBooc Pro laptop with 2.66 GHz i7 processor and 8Gb of
memory.

We use Chainsaw with FaCT++ v 1.5.3 as a delegate reasoner, and com-
pare the results with the same version of FaCT++.

As a test suite we took 57 of the BioPortal ontologies2. For every ontology we
perform a set of classes, properties and individuals tests, i.e., for every class we
checked its satisfiability, ask for its instances and for sub-, super- and equivalent
classes. Moreover, for every class we took its subclass C and superclass D, and
ask whether C is a subclass of D. For every individual we ask the sets of its types,
and for same and different individuals. For every property, its sub-, super, and
equivalent properties were queried, together with property range and domain.

The test results are presented in a few tables below. All the tables have the
same format: the name of the method called, total number of calls for all tests,
and the total time spend in that method for Chainsaw and FaCT++, given
in milliseconds.

1 http://owlapi.sourceforge.net
2 http://bioportal.bioontology.org



Method Number of calls Chainsaw FaCT++

getUnsatisfiableClasses 57 0 3
init 57 23,442 1,490
isConsistent 57 2,532 0
precomputeInferences 57 1 28,411

Table 1. Methods called once per ontology.

Method Number of calls Chainsaw FaCT++

getDifferentIndividuals 132 314 327
getSameIndividuals 132 28 8
getTypes 264 73 25
getInstances 173204 522,645 1,903

Table 2. Methods pertaining to individuals.

Table 1 contains operations that are done only once for every ontology. First
every reasoner is initialised, then it is asked to precompute inferences (in our
tests reasoners were asked to precompute a class hierarchy). In the next step the
consistency of an ontology is checked. After that, we asked reasoners whether
there were any unsatisfiable classes.

It is easy to see that the initialisation of Chainsaw reasoner took much
more time than the one for FaCT++. That overhead comes from the necessity
of creating LAD for each ontology. Interesting to see, however, how the time
is distributed between the precomputeInferences and isConsistent steps. In the
case of Chainsaw nothing is done during the precomputing step, and there is
a need to do work for checking the ontology consistency. On the other hand,
FaCT++ tests consistency during classification, so answering that query costs
nothing.

The data on individuals is presented in the Table 2. There were only 3 ontolo-
gies with individuals in our test suite, and the time needed for individual-related
operations is similar for both reasoners, with the exception of getInstances case,
in which FaCT++ behaves much better than Chainsaw.

However, the discerning reader will have noticed that there is a number of
ontologies not containing any individual; yet, the reasoners are taking some time,
in the case of Chainsaw quite some time, to answer the query with an empty
set. This points to possible optimisations for both Chainsaw and FaCT++
itself.

Class-related queries are presented in the Table 3. Note that the hierarchical
questions are faster for Chainsaw; this is mainly because there is a simple way
to check them, based on LAD. Satisfiability and entailment queries, however,
took more time in Chainsaw than in FaCT++; here the overhead to produce
modules and to create a reasoner starts play a negative role.



Method Number of calls Chainsaw FaCT++

getEquivalentClasses 86602 2,012 1,509
getSubClasses 259863 7,433 10,007
getSuperClasses 259863 5,059 8,866
isSatisfiable 86602 309,067 1,349
isEntailed 4631065 661,707 89,570

Table 3. Methods pertaining to classes and axiom entailment.

Method Number of calls Chainsaw FaCT++

getDisjointDataProperties 287 8 1
getEquivalentDataProperties 287 12 6
getDataPropertyDomains 574 265 456
getSubDataProperties 574 243 9
getSuperDataProperties 574 21 6
getDisjointObjectProperties 662 83 14
getEquivalentObjectProperties 662 86 14
getInverseObjectProperties 662 81 13
getObjectPropertyDomains 1324 3,514 1,176
getObjectPropertyRanges 1324 2,194 621
getSubObjectProperties 1324 36,657 32
getSuperObjectProperties 1324 176 27
getObjectPropertyValues 3907 7,085 6,645
getDataPropertyValues 3960 815 10

Table 4. Methods pertaining to properties.

Queries about properties are presented in the Table 4. Besides a few queries
(like getSubObjectProperties), the two reasoners appear to behave similarly on
that data, i.e. the difference, comparing with Tables 2 and 3, is much smaller.

4.1 Genesis of Chainsaw and OBI Prototype Results

The idea for Chainsaw was born of a concrete need: experiments needed to be
run to prove a theory, and one of the ontologies chosen for the task was the latest
version of the OBI ontology3.

The task of Knowledge Exploration is to explore the structure of a model for
a given class expression. In particular, the tableau algorithm proves the satisfi-
ability of a class by providing a tree-shaped model of that class. The knowledge
exploration allows one to access that model, i.e. to know the form of the model
as well as the labels of the nodes and edges of the model’s tree.

These experiments are based on an extension to OWLReasoner that was de-
signed to allow a developer to gain information about the completion graph that
a tableaux reasoner builds for classes and properties; this interface, available in

3 obi-ontology.org/



the OWL API as OWLKnowledgeExplorerReasoner, is, at the time of writing,
only implemented by FaCT++, so said experiments had to rely on it to be
executed.

Unfortunately, the latest version of OBI is not easily managed by FaCT++;
classifying the ontology takes, in fact, four hours and approximatively six giga-
bytes of memory to reach 97%. Our tests needed to query for the subsumption
hierarchy of almost all classes declared and used in OBI, and to check whether a
given class expression would subsume said classes; this amounted to little more
than a hundred thousand subsumption tests.

Using the same idea we illustrated as the basis for Chainsaw, we were able
to write code that would extract a module for the query, classify it and answer
the query, using FaCT++; the maximum amount of time needed to classify one
of these modules was five seconds, and the memory used for each classification
was proportionally small; we were able to use caching of modules and reasoners
effectively, and the whole experiment could be run in under four hours, using
approximatively three gigabytes of RAM.

These (highly experimental) results are reported in Table 4.1. As is it easy
to see, for this ontology Chainsaw is much better than FaCT++, as the lat-
ter could not provide any results in a given time frame. As we mentioned in
Section 1, this is the kind of task for which Chainsaw was designed.

Reasoner Classification Total Subsumption Time Tests per Reasoner
time memory tests second instances

FaCT++ > 4 hrs 6 GB - - - 1

Chainsaw - 3 GB 100,000 4 hrs 7 300

Table 5. Prototype performances on OBI ontology for knowledge exploration.

5 Conclusions

In this paper, we presented an approach to the use of modularization and atomic
decomposition to improve scalability for reasoners, and Chainsaw, a prototype
reasoner implementation for this approach. We showed the potential advantages
of this approach in the face of increasingly complex and large ontologies, at the
expense of pure performance on simple ontologies.

We provided an overview of what trade-offs in terms of memory and speed are
involved in our approach, and how our prototype copes with them, presenting a
few test results on BioPortal and OBI ontologies, and hinted at future develop-
ments and optimizations that have emerged during the prototype creation.
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